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HYDROLOGIC, AND GEOMORPHIC FACTORS AFFECTING
CONSERVATION OF A RIVER-BREEDING
FROG (RANA BOYLII)!

SaraH 1. KUPFERBERG .
Department of Integrative Biology, University of California at Berkeley,
_ Berkeley, California 94720 USA

Abstract. Organisms that live in highly varizble environments, such as rivers, rely on
adaptations to withstand and recover from disturbance. These adaptations include behavioral
traits, such as habitat preference and plasticity of reproductive timing, that minimize the
effects of discharge fluctuation. Studies linking hydrologic regime, habitat preference, and
population processes, however, are predominantly limited to fish. Information on other
sensitive taxa is necessary to facilitate conservation of multispecies asscmblagcs and res-
toration of biodiversity in degraded river channels.

1 srudied the funcrional relationship bctwccn physical habitat and rﬂproducuon of the

foothiils yellow-legged frog (Rana boylii), a California State Species of Special Concern.

From 1992 to 1994, I mapped breeding sites along 5.3 km of the South Fork Eel River in

northern Califormia and monitored egg survival to hatching. Frogs selected sites over a

range of spatial scales and timed their egg-laying to avoid fluctuations in river stage and

current velocity associated with changes in discharge, The main sources of mortality were

desiccation and subsequent predation of eggs in a dry year and scour from substrate in wet

years, both caused by changes in stage and velocity. At the finest spatial scale, frogs attached

eggs 1o cobbles and boulders at lower than ambient flow velocities. At larger scales, breeding

sites.-were near confluences of tributary drainages and were located in wide, shallow reaches.

. Clutches 1aid i in relatively narrower and deeper channels had poor survival in rainy as well
k as dry spnngs Most breeding sites were used. repeatedly, despite between- and within- -year
: variatior in spring stage of the river.. This pattern of site selection suggests that conservation
of . Rana boylii may be enhanced by mamtammg or restoring channcls with shapcs that'

provide stable habitat over a range of river stages.

- F1G, 1. Locati
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"INTRODUCTION

The loss of aquatic biodiversity in rivers and streams
is a global conservation problem (Master 1990, Allan
and Flecker 1993, Sparks 1995). In these habitats, spe-
cies declines are often associated with water diversion,

impoundment, flow regulation, channelization,: and.

other habitat modifications (Williams et al. 1989, Bian-

co 1990, Moyle 2nd Williams 1990, Elvira 1995). Such -

perturbations alter sediment and-water flow regime,
which, in turn, cause geomorphic change. Impacts in-
clude incising of channels downstream from dams,
broadening and deepening of channels after in-stream
gravel mining, and filling of interstices with fine sed-
iments {Kondolf and Manhews 1993, Ligon et al
1995). Thus, channel restoration to mitigate for bio-

diversity loss has.become a priority (NRC 1992); un--

derscoring the need for design recommendations based
on balancing the requirements of many species. Studies
of biotic response to physical channel properties, how-
ever, have focused primarily on fish habitat use and
classification {Wesche 1985, Sullivan 1986, Orth 1987,

! Manuscript received 15 May 1995: revised 30 October
1995; accepled 2 December 1995.

Nestler et al.-_ldSQ-,.Kcrshner and Shidér 1992); We
need data linking birth and death rates of many species
to geomorphic and hydraulic parameters if rivers are

to be managed as whole ecosystems, This has been

done theoretically in modeis of river food chains (Pow-

. er.et al. 1995). .

In the Pacific Northwest most studlcs hnkmg hy-

drology and geomorphology to populatmn processes

emphasize salmonid spawning and rearing habital
(Lister and Genoe 1970, Bisson et al. 1982, Laufic et

al. 1986, McMahon and Hartmann 1989), rather than.

habitats of a variety of aquatic organisms (but sec Pow-
er 1992a) that may include other sensitive taxa. One
such species is the foothills yellow-legged frog, Rand

boylii, which lives in rivers and streams of Califordia -

and Oregon (Zweifel 1955, Stebbins 1985). This frog
is a California Stite Species of Special Concern (Jen-
nings-and Hayes 1994). It has experienced s:gmﬁcam
population declines, especially in the southern and in-
land parts of 1§ range relative to northern coastal areas
(G. Fellers, National Biological Service, personal con
munication), Decline has occurred with the modifica-
tion of river habitats, introduction of bullfrogs (Rﬂ”f‘
catesbemna) that are prcdalors and compemoﬁ Of

SUR ‘ 1332

sp., and green su
ind S.J. Kupfert

Jennings 1986).

een habitat g
quintifying the i
survive to ha
To maintain v
in highly variab
be able to withst
I-present observ
the effects of Iy
by using sites w
tions that minin
tuation. Specific:
52:(1) Is the distits
E portion 1o avail:
fluences and g:

tality, and how fr




Flé.,"_ 1. Location of the Angelo Coast,f{ange ‘Preserve
{ACRP, dotted outline) in northern California, Study reach is
enclosed by large brackets, - ° s

- H — .

boylii. (Moyle 1973, Hayes and Jennings 1986,
ous. tg: the drainage basin (Sacramento -squawfish,
Ptychocheilus grandis) orthe region (bass, Micropterus
sp., and green sunfish, Lepomis cyaneltus) (M.E. Power
and S.J. Kupferberg, unpublished data from Ten Mile
Creek and South Fork Eel River below confluence with
Ten Mile Creek). These simultaneous stresses make the
causes of ranid decline difficult to untangle (Hayes and
Jennings 1986). This study focuses on the links be-
tween habitat quality and reproduction of R. boylii by
quantifying the physical conditions necessary for eggs
to survive to hatching, - ‘ - '

To maintain viable populations, organisms that live
* In highly variable environments, such as rivers, must
be able to withstand or recover from disturbance. Here,
I present observations that yellow-legged frogs lessen
the effects of hydrologic disturbance during breeding
by uvsing sites with geomorphic and hydraulic condi-
tions that minimize adverse effects of discharge fluc-
tuation. Specifically, I address the following questions:
(1) Is the distribution of breeding sites random, in pro-
poﬁiogli"to availability, with respect to tributary con-
fluences and geomorphic units (pools, riffies, and
bars)? (2) Within breeding sites, do frogs oviposit ac-

cording to depth, distance to shore, flow velocity, and -

substrate? (3) What are the major causes of egg mor-
tality, and how frequently do they occur? (4) Is survival

;| Gaging

Kup-:'
ferberg.1996), and invasion by fish either nonindigen- -

Statlon

Fi6.2." Study reach and Rana boylii breeding sites (poiats

. on heavy solid line enclosed by small brackets). The frogs

occut, but do'not breed, in tributaries (thin solid lines), Shaded
thick lines indicate drainage patterns of rivulets that How in
early spring. Letter placement indicates breeding site location
ou the left or right bank. Site use ranged from régular to
sporadic, Site name (ne. clutches in 1992, 1993, and 1994;
- . . indicates sites not censused in- 1992): A (..., 37,44);B
(23,23,43):C (..., 0,4:D(..., 0, 12);E (0. 3, 9), F {48,
26, 37); G (22, 23, 26); 4 (7. 0, 1231 (22, 27, 33); 7.(47,
41, 385 K (0.0,8;L(18,0, I M (1L, 23,22); N (20,29, -
26, 0(...0,1:P(..,0, 65QC...03nR(.., 7 10);
S(..43,55 T(...0, 2); U (10, 19, 10); V (6, 13, 60);
W (26, 11, 32); X (32, 27, ONY(...4.25,2(..,8 19;
AA (..., 43,29,AB (... 0, 4), AC{..., 0,5, )

of eggs related to the shape of the channel and date of
oviposition? (5) Do frogs initiate oviposition in rélation

' to discharge and temperature? I address these guestions$

for a stable population of R. boylif in a relatively pris

tine river reach, and discuss implications for engi-
neered channel design and flow régime, - :

NATURAL HISTORY AND

Stupy Sire . ‘

This research was conducted at the South Fork Eel

River, within the Angelo Coast Range Reserve (for

merly the Northern California Coast Range Preserve),

Mendocino County, California (39°44' N, 123°39' W)

{Fig. 1). I chose the 5.3-km study reach (marked by

brackets in Fig. 2} because of accessibility and the

- absence of nonindigenous bullfrogs and fish relative to

downstream reaches near Ten Mile Creek, where they
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are present. The study reach is typical of streams and
rivers inhabited by R. boylii, being characterized by
pattial shadé, shallow riffles, and substrates cobble-
sized or greater (Hayes and Jennings 1988). The wa-

tershed is sparsely settled and dominated by old-growth

mixed coniferovs forest. Within the study area, the
channel is fourth order and the gradient is 0.44%. The
river has cut 2 narrow canyon lacking a ficodplain, and
active channel width is =30 m.

Although R. boylif are common along tributaries,
they congregate at the same sites in the main stem each
spring to breed. In 1992, I located 15 discrete sites
along 2.6 km of noncontiguous river channel. In 1393
and 1994, I expanded the survey to 5.3 contignous
kilometres and located 14 additional sites (Fig. 2). I
define these discrete sites as breeding sites, and the
location of a given egg mass as an oviposition site.
Breeding sites range in size from 2 X 10 mto 5 X 70
" m, and are separated from other brceding sites by up
to several hundred metres. For =1 mo beginning in
mid-April to earlly May, mating and egg-laying occur.
Egg incubation lasts =2 wk, depending on water tem-
perature and position in a clutch, with eggs at the pe-
rimeter hatching first and those at the center and close

to the rock hatching last (S. J. Kupferberg, personal -

observation), The number of egg masses indicates re-
productive female population size, because one female
lays one clutch of 1000-2000 eggs (Zweifel 1955).
During the three study years the mean (*1 SE) repro-
ductive cutput was 92.8 * 10.2 clutches/km, or 18.8

* 1.9 ctutches per brccding'sitc. For the 15 breeding .,

sites sampled in all three years, among-year differences
in this estimate of population size were not significant
(multivariate repeated-measures ANOVA: Wllks‘ A=
0.68; Fip = 3.02; P = 008)

M:-:mons :
Breeding site distribution

I mapped the distribution of breeding sites dunng
spring 1992-1994 and measured the distance from each
breeding site to the nearest tributary (lemporary and
permanent), using 2 hip chain in the field and topo-
graphic maps. At mid-April 1994 discharge (flow vol-

ume per unit time) levels, I characterized each breeding

site by noting whether or not it was at a bar, and by
classifying the adjacent channel according to depth and
wrbulence: riffle (water surface turbulent, depth <1
m); shallow pool (smooth water surface, depth <1 m);
medium pool (1 m = depth < 2 m); or deep poo! (depth
=2 m). I measured the length of each channel type with
a hip chain and calculated the proportion of the study
reach in each channel type. To determine whether or
not distribution of breeding sites indicated selectivity,
I compared observed to expected frequencies with chi-
square tests. Expected frequencies were calculated un-
der the null hypothesis that the proportion of breeding
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sites in each channel type would equal the proportioy
of the study reach in each channel type.

Egg survival

* Over the survey period, April-June 1992-1994, |
monitored survival to hatching by marking individual
egg masses with numbered flags or popsicle sticks
placed nearby. I visually estimated the percent of cluich
remaining from week to week, and finally the percem
hatching. I gave each clutch a rank with respect 1o
desiccation and scour. For stranding: 1, egg mass com-
pletely exposed to air; 2, egg mass partially exposed:
and 3, egg mass completely submerged. For scouring:
I, egg mass completely gone from substrate; 2, epe
mass partially removed; and 3, egg mass intact, If
markers were not relocated, clutches were not included
in analyses. I also noted the presence or sign of pred-
ators and fungal disease. Effects of scour were visually
distinctive from predation. A portion missing indicaied

~ a large predator, whereas frayed jelly and loose con-
" nections among eggs indicated partial scour. 1 attrib-

uted empty egg cases to small predators, such as lim-
nephilid caddisflies, which can penetrate jelly to con-
sume embryos (Stein 1985). I did not observe empty
jelly cases in recently ovxposncd egg masses. I used
log-linear analysis to assess associations among the
mortality sources, Kruskal-Wallis tests to compare sur-
vival among brccdmg sites, and Speannan s rank cor-
relations_to assess the corrcspondcncc among ovipo-
sition date, stra.ﬁdmg/scourmg mdcx, and hatching suc-
Cess.— .-

H:stor:cal analysis of s:randmg and
sc,burmg event ﬁ'eqaency

To dctermmc how representative the three study
years were in 1erms of rainfall and discharge, I con-
sulted USGS records of daily and peak discharge mea-
sured at the smdy site from 1946 to 1970 (EarthInfo

1994). Recording of river stage (elevation of water sur- .

face in relation 1o an arbitrary datum) was resamed in
1990 by ML E, Powcr at the same staff gage. The gaging
station is near the most upstream breeding site (Fig.
2). In spring 1993, base flow (discharge in between
storm events} was estimated from discharge monitored
on Elder Creek (EarthInfo 1994), because sediment
clogged the stilling well at the South Fork Eel gaging
station. At base flow, the fioat measuring stage was
resting on sediment, but measurements at peak flows

were accurate. In 1994, gaps in the record due to tech-

nical problems with the data logger were filled in by
extrapolation from data gathered at a temporary ga£8
at breeding site X (Fig. 2) (A. Lind, U.S. Fores! Ser-
vice, unpublished data). 1 estimated discharge from
stage height using a low-flow rating curve (M. E. Pow”
er, unpublished dara) in conjunction with a rating CuTVe

provided by the U.S. Geological Survey (K. Markham
USGS, Ukiah, California, unpublished dara). A rating
curve is an empirical refationship developed by med
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suring the cross-sectional area of flowing water and the
velocity at several stages; the product of area and ve-
locity is discharge.

The frequencies of large spring spates and dewater-
ing rates were assessed by calculating the recurrence
intervals of such events during the oviposition period,
I5 Apnl—lS June, 1946-1970. Recurrence interval =
(N + 1)/(M), where N is the number of years of record

and M is the rank order of the discharge, with the largest -
. discharge ranked first (Leopold 1974). Dewatering rate

of thé channel was calculated as the percent decrcasc
in discharge ovcr the oviposition penod

Plzy.szcal conditions at clutches

I measured water depth, distance to shore, and sub-
strate’ (bedrock, boulder = 256 mm, cobble = 64 mm,
pebble = 2 mm, or vegetation) at recently (within 0—
3 d) laid clutches throughout the 1992 and 1994 breed-
ing seasons. Between—year differences in dcprh and dis-

tance to shore were compared using ¢ tests. At seven’

breeding sites on- -7 May 1992 (discharge: Q = 0.44
m*s at gaging stanon) I measured velocity with a cur-
tent meter, halding the rotor adjacent to the center of
recently laid clutches. Velocity was then mcasured sev-
eral centimetres honzontally away from Leggs at depths
equivalent to the centers of the egg masses. These am-
bient velocities therefore reflect flow conditions of the
nezr—bank breeding area, not the entlre channel. A two-

way ANOVA tested for differences between velocity
at the egg mass and ambient velocity, as well as for

dxffe_rences among breeding sites. Location of velocity

measurement, at egg mass'vs. ambient, was treated as
a fixed factor and was crossed with breeding site, which
was also treated as a fixed factor because sites are oftcn
hlstorlca! Lo

Channel geometry in relation to breeding
"\ site selection and egg survival

During April 1994, I 'éstablished staff gages (metre
sticks wired to steel rebar pounded into the river bed)
and measured channe] cross sections with a surveyor's

rod and level at.the approximate center of 15 breeding -

sites and at 11 nonbreeding sites. I chose nonbreeding
sites by dividing the study reach into 15 equal-length
segments; within each segment, T used 10-sided dice
{(Kotanen 1992) to generate the digits of longitudinal
distances for the origin of each cross section. Four cross
sections were eliminated because they fell within or
only a few metres away from breeding sites. Between
breeding and nonbreeding sites, I compared hydraulie
radius (the ratio of cross-sectional area to wetted pe-
rimeter, about equal to the mean depth) and wetted
cross-sectional area at discharge 0'= 0.20 m¥s at the
gagmg station. To test the hypothesis that good breed-
ing sites have geometries in which stage and velocity
are relatx_vely insensitive to changes in discharge, I
compared four descriptors of channel shape: (13 cross-
sectional arca; (2) wetted width to depth ratio; (3) wet-

~
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ted perimeter, which is the distance along the varying
topography of the channel bottom rather than width of
the water surface; and (4) hydraulic radins. For each
variable, I used Mann-Whitney U/ tests to compare
breeding to nonbreeding sites, and to compare sites
with above-average survival to sites with below-av-
erage survival. To illustrate how channel shape inter-
acts with changes in discharge, I used HEC-2 computer
simulations of water surface profiles (U.S. Army Corps

. of Engineers 1991) in a typical low-survival channel

" {site W) and a high-survival channel (site X). To de-
termine if the survival consequences of chanriel shape
were consistent under conditions of decreasing and in-
creasing discharge, I used Pearson’s r to test for sur-
vival correlation in 2 dry and a wet year. All stafistics

-were calenlated with SYSTAT (Wilkinson 1992).

Timing and duration of breeding

"To cvaluate whether or not frogs began oviposition

at the same discharge each year and whether or not the

length of breeding activity was influenced by discharge

fluctuations, 'I superimposed a’cumulative frequency

distribution of clutches over time onto ‘the Apnl——May
.. hydrographs, '

To evaluate whether or not frogs began oviposition
at the same tcmperature each year, I compared daily

ean water and air temperature during the week pre-
ceding and the week following the appca.rance of the
first egg mass, Means were calculated from hourly data
logged from thermistors at the gagmg station. Air tem-
perature at a given hour may vary among breeding sites
- according to canycn wall slope and aspect, but I assume
that differences in daily means are minimal. Water tem-
peratures are likely to be uniform across sites and to
mirror values of the thermistor, located =10 cm above
the river bed. Most clutches were laid <10 em above

 the bed, at depths of =20 cm, where the effects of

surface warming would be minimal. In the early spring,
variation in water temperature due to ground watér
seeps, regions of upwelling, and tributary confluences
are also mzmmal (5. 1. Kupferberg, personal obser-
vation). -

REsSULTS

Geomorphic distribution of breeding
sites and physical characteristics of
egg attachment sites

Breeding sites tended to be located near tributary
confluences (Fig. 2, Table 1)-in shallow réaphes (Table
2). Typically, breeding site channels were asymmetrical
and eggs were deposited on the less steeply sloping
side, indicating that these sites provide shallow, low-
velocity habitats close to shore, over a range of river
stages. Of the surveyed channels, those with epgs were
wider and shallower than non-egg channels chosen at
random (Fig, 3). Twenty of 29 breeding sites were at
cobble/small boulder bars., At the April 1994 stage,

‘w%m i
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TaBLE 1..- Landscape pattemns of Rana boylii oviposition at
the South Fork Eel River, California. Most cluiches are in
closer ‘proximity to confluences with side drainages than
would be expected by chance.

SARAH J. KUPFERBERG
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TaBLE 2. Nenrandom distribution of Rana bovlii breed;n
sites {n = 29) with respect 10 geomorphic features of the
South Fork Eel River, based on a 3.6-km longitudina] syr.
vey (2 = 8.1, df = 3, P < 0.05).

Distance
1o near- Propor- Ob- )
est  tionof served Expected
tributary  study no. no.
Year (m) reach clutches clutches ¥ P
1992 <100 0.57 292 166 .224 <0.001
=100 043 0 126
1693 <100  0.57 399 233 274 <0.001
=100 043 12 178
1594 <100 Q.57 553 337 320 <0.001
=00  0.43 42 258
Tdf = 1,

emergent rocks were a common feature at breeding
sites (15 out of 15 surveyed channels) but not at random
sites (3 out of 11 channels). '

Individual egg attachment sites cceurred within a
narrow depth range and a more variable range of dis-
tances from shore. Depth ranged from 4 to 43 cm, with
consistent yearly means (=1 sp) and coefficients of
variation (X5 = 19.7 & 5.4, CVypp, = 274%, n =

225; Koo = 19.7 + 7.3, CVyge = 36.5%, n'= 293; 1

Proportion Observed Expecieg
Feature :

of reach  no. sites  po. sjpay

Riffle 0.16 3 4.6
Shallow pool

(depth < 1 m) 0.46 21 13.4
Medium pool

(1 m=depth<2m) 0.13 1 33
Deep pool ‘ .

(depth = 2 m)t 0.25 . 4 73 -

't Breeding sites were at bars near the outlets of these paols,

‘not at the deepest part of the profile,

than mean ambiesit velocities within the breeding site
(Fig. 4). ‘

Hatching success in relation to
hydrology and channel geometry

The main causes of mortality were hydrologic: des-
iccation (in 1992) or scour (in 1993 and 1994) (Figs.
5A, 6). In 1992, a drought year, survival was relatively
high (89.7 = 1_0.2%. ‘mean %1 SE) and stranding was
the major cause of mortality. During the oviposition

ere not microsi
her-velocities 1
001). A signific
measurement (nea
Frocaion x aie = 11.

bient velocity i

= 0.05, P = 0.96). To achicve consistent egg depth,
frogs oviposited at highly variable distances from
shore, ranging from 0 to 1250 cm. In 1994 when base

period, 3 cm of rain fell and discharge decreased 53% - - . _
(from 0.60 to 0.28 m¥s) in the 5 wk between appear- Vas scour, 2ssoc
: ance of the ﬁ;st clutches and hgtchir':g of most of the . e breeding' ses
flow discharge was low, frogs oviposited farther from  eggs. In 1993, éurvival could not be estimated accu- icated that rive:
shore than they did in 1992 (X5, = 2203 % 184.3, rately because of late-season rainstorms (24.7 cm total. cak fiows, and :
CVyigs = 83.6%, n = 216 X o0, = 280.5 = 260.1, CV o, ~ rainfall) when most larvae were emerging, constituting . :

. cm, the same
= 92.72%, n = 290; ¢t = 3.0, P = 0.003). The most

commonly used substrates were cobbles (53.6%) and

boulders (34.4%). Bedrock and vegetation were used
much less frequently (5.6% and 1.2%, respectively).
Frogs selected att;cﬂr_ﬁent sites on lee sides of rocks
and beneath overhangs within a narfow velocity range
(3.2 = 0.19 e/, mean * 1 s&; range = 1.1-13.5 cm/s).

a >300% increase.in discherge (from 4.8 to 20.8 m%s).
After the water deceded and visibility improved, most
egg masses had been swept off their substrates and
markers were also gone, making an accurate CCRsus
impossible. Subsequent tadpole censusing later in the
summer indicated that survival was indeed very low

(8. J. Kupferberg, unpublished data). In 1994, survivai

tranding was, 1

Flow velocities at egg masses were significantly 1ci_wplr was 79.8 % 12,4% and the major causc of mortality

. . . Lo N Lt et e

M _ tighsunival she
low-survival site
non-Dviposition sita

Area ()

FiG. 3. Mean values (+] sg) of cross-sec- §
tional geometry variables for nonbreeding (non- !
oviposition) sites, breeding sites (n = 11 with
high survival (n = 10), and low-survival siles
{n = 5). Measurements refer to the wetted.chan- - 3
nel in mid-April 1994, when oviposition began.

* indicates significant (P < 0.05) d,f-fcren_cei
between high- and low-survival breeding f‘?e'
(Usssncseps = 465, Usncus pwimer = 46-5% ™ 117
dicates significant (P = 0.01) differences be

tween nonbreeding and breeding sites {Mann-
: Whitney Uy st i = 140, Usa = 14D

ifferences in or

Width : depth "Stranding, a .

Wetted perimeter (m)

S R G e S L e
e a4

Hydraulic radius {cm)
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Mean values ~ B



[E

*: November’ 1996 [

S

204
]
g 15
5 ]
"m ]
2 0]
- 1/
S 1 . -
g sl 4 -+
i 1:
o ¥ S
P 5 1w 15 20

Amblent flow (cmls)

FiG. 4 Rana boylil prefer low—veloc:ty egg auachment
microsites (Fm,,,, exp v mmticns = 1405 df = 1L,170; P <« 0.001).
Each point is the mean (£1'sE). fiow velocity measured at
clutchies () and $-10cm away from eggs (x), for seven breed-
ing sites, Line x = y indicates cxpectcd flow ai eggs if frogs
weré not microsite selective, Some sites had significantly
hjghcr velocities than others (£, = 27.6; df = 6, 170; P«

. 0.001} A significant interaction between location of flow -

measurement (near or away from egg mass) and breeding site
(me e = 11.2; df = 6, 170; P < 0. 001) indicates the
increasing difference between egg and ambxcnt velocity as
ambu:nt VClOClly increases.

 was Scouf, assocxated with 14.3 cm total rainfall over
the breedmg jseason. Debns marks on staff gages in-
dicated that river stagc rose an average - of 40 cm dunng
peak flows, and stage height was, within an average of
I cm; the samc at hatching as at initial egg-laying..
Strandmg was,- thercforc. ‘minimal. In' both 1992 and
1994, 'eggs 1aid later experienced less variation in dis-
chargc and had less chance of being scoured or stranded
than eggs laid garlier (Figs. 5B and 6).

Mortahty was also specific to breeding site (Fig. 5A).
The correlanon between survival in years with and
wrthout spring rdin (Fxg 7) suggests that, for some
. channel shapes, stage and veloctty are ‘relatively in-

-sensitive to dlschﬂ[‘gﬂ changes and, thus, allow higher
survival to haiching (Fig. 8). There were sighificant
differences between the above- avcrage. and below-av-
erage survival sites, with respect to wetted perimeter
and w:dth to depr.h ratie (Fig. 3), but no s1gmﬁcant
differences in cross-sectional area or depth.

Strandmg, a consequence of discharge fluctuation
and channel geometry, interacted with predation but
not w1th fungal-associated mortality (Table 3). In 1992,
strandxng increased predation by exposing eggs to sur-
face-dwelling hemipterans -and terrestrial predators
such as ants, in addition to fully aquatic predators such
as Ixmnephxlzd ‘caddis fly larvae (41% of exposed
. ¢luiches had predators present, whereas 14% of sub-
merged clutches had predators present), Strandmg did
not alter risk of fungat attack (23% of exposed clutches
had féngus vs. 25% of submerged clutches). Moreover,
risks of predanon and fungal attack were independent.

'RIVER MORPHOLOGY ‘AND FROG REPRODUCTION o ey

Historically, eggs face scouring conditions more of-
ten than stranding. The proportion of one stranding to
two scouring years resembles the longer term record,
in which there were eight years with no rain durin g the
ov1pos1t:on permd and 16 years with rain, The 1992—
1994 study permd was representative of historical
" breeding season condmons with respect to peak dis-
charge (Fig. 9A), but the late May-early Juie 1993
- StOFms were anomalous with respect to ‘dewatering -of
- the channel (Fig. 9B) Although the 1993 flood has a
" recurrence mtcrval of =10 yr, or a 10% chance of oc-
_curring in any g:vcn 'year’s breeding season, it repre-

sents a much rarer event m terms of dewatering (Fig.
9B) e

.- Sea:'::é&ali:): _éf breeding
In low base-flow discharge years, oiriposition oc-

..curred earlier than in high discharge years (Fig. 5). The
duration of breeding activity corresponded to rain dur-

ing the ovxposxtlon period. In the absence of apprecia- )

ble spring rain dunng 1992, 75% of clutches were laid
in 11 d. In the presence of rain in 1994, 75% of clutchcs
were laid in 39 d. Peaks on the 1994 hydrograph cor-
respond to fiat regions of the cumulative percentage of
clutches curve, whereas the réceding limbs after peaks
correspond. 1o regions of steep increase in oviposition.
) Ivitiation of oviposition was also associated with
warming (Fig. 10). Daily mean air and water temper-
atures were sxgmﬁcantly warmer during the first week
of ovxposmon than during the preceding week| in all
‘three years. There were significant among-year differ-
ences in prc—ovnposmon waler temperature, but no dif-

fcrences in postoviposition temperature, as. indicated ‘

"by the significant interaction term in the ANOVA.

DISCUSSION

‘The reproductive strategy of R boylii appears well-
suited to rivers with predictable winter—flood, summer—
drought hydrographs Breeding was completed in a

shorter penod of time and earlier in a drought year

compared to two years with rainy owposmon periods.
Successful R. boylii selected historically used breeding
sites associated with tributary confluences, with dis-
tinctive channel morphologu:_s, and with bouIdcrs_that
_created microhabitats with below-ambient flow veloc-
ity. In combination, these behaviors enhanced egg and
early larval survival by decreasing the risk of desic-
cation and concomitant exposure to predators, and by
mitigating the likelihood of scour off rocks.

When rivers are modified by channchz_a;mn. gravel
mining, damming, or diversion, the characteristics of
channel morphology and hydrology: 1mportant to R
boylii recruitment become decouplcd from the climatic
patterns that regulate breeding. Latitudinal variation in
R. boylii breeding season, in which southern popula-

tions breed earlier than northern populations (Zweifel

1955), suggests that these frogs wait for warm tem-
peratures and the cessation of Wmlcr rams to initiate
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FIG. 5. Mean {+1 sé) scouring and stranding indices of R. b_af);'lx;i'cgg masses were significantly different among breeding
sites (A), and were significantly correlated with oviposition date (B} and survival. For 1992: Fynsing inges x survivat = 0.62, P <

0.001; between-site differences, Kruskall-Wallis 2 = 87.3, df = 11, P < 0.001; #

clutches at 12 sites. For 1994: r,

ing index x o = 0.28; P < 0.01; n = 280

woonst bodcs % survival = 0-89, £ < 0.001; between-site differences, Kruskal-Wallis x2 = 60.8, df =

22, P < 0001 i ioden x ame = 0.70, P < 0.001; n = 476 clutches at 23 sites, Daggers indicate sites that had significantly
more lasses in both years. Index of stranding fate: I, egg mass completely exposed to the air; 2, partially exposed; and 3,
completely submerged. Index for scouring: 1, egg mass completely pone from substrate; 2; partially removed; and 3, intacl.

Breeding sites A—F, 'R, and Z-AB were not monitored for survival in 1992, .

breeding. The specific proximal_.c‘ucs that R. boylif use

to initiate breeding, such as air and water temperature,
insolation, and discharge, are currently being compared

in regulated and unregnlated rivers across a latitudinal -
gradient in six northern California watersheds (A. Lind,

U.S. Forest Service, personal communication). This
forthcoming information plus an understanding of
breeding site selection and mortality sources within a
single, relatively pristine system (from this study of
the South Fork Eel River watershed) may allow us to
manage rivers in ways that do not continue to threaten
Rana boylif. i

Spatial scales of habitat preference

The choice of appropriate boundaries for a conser-
vation project is particularly important for riverine or-
ganisms, because rivers are highly heterogeneous en-
vironments (Ward 1989) in which habitats are ncstcd_

'S -,
h

hierarchically (Frisset et al. 1986, Hawkins et al. 1993).
. Factors controlling the distribution and abundance ?f
river organisms span many orders of magnitude in
space and time (Minshall 1988, Crowl and Schnell
1990, Biggs and Gerbaux 1993), from climate, geology.
land use, and hydrologic regime (Benda et al. 1992,
Poff and Allan 1995), to water velocity (Rabeni and
Minshall 1977, Biggs and Gerbaux 1993), substrate
(Minshall 1984, Power 1992b), food abundance, and
predatién (Peckarsky 1984, Power 1987, Crow! and
Schnell 1990). To determine what habitats rnust_n_ef-
essarily be included in 2 project focused on maintaining
R. boylif populations, I consider both the largest and
smallest scales' (extent and grain, sensu Wiens 1989)
of spatial heterogeneity 1o which these frogs respond.
in terms of reproductive behaviorn

The largest scale of R. boylii selectivity was 2l ihe

sub-basin level (1000s of square mctr;;s). Brceding
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Fig. 6. Spring hydrographs 1992-1994 (bold Tine) and
curnulative frequency distribution of 8. baylii clutches (thin
line)..-.‘; . . :
sites were associated with drainage p:at_tems of the sub-
basins and were close to confluences with tributaries.
This result may be explained by the disadvantages of
tributaries for breeding, but relative advantages for
adui't—'q'\.rerwimering. Tributaries are dark and cool with
low algal food production, conditions not conducive to
tadpole growth. Although R. boylii overwintering be-.

havior is not known, adults are commonly found in the

tributaries in the early spring before they are abundant

in the mainstem (8. J. Kupferberg, personal observa-
tion}, It is also not known whether or, not R. boylii
leave water channels for the forest margins, but they

RIVER MORPHOLOGY'AND FROG REPRODUCTION

are rarely seen more than a few metres away from water
(8. J. Kupferberg, personal observation). It is thus like-
ly that they leave the active channel of the mainstem
to avoid scour, and move 1o low-order tributaries, some

- of which may only flow during the rainy season. Adults

may then migrate downstream to the main stem to
breed, congregating at the gravel/boulder bars closest
to the tributary confluences. An alternative explaration
for this result is that sediment from tributaries may
conuib'ugé to local maintenance of the coarse sediment

- patches that cover the main stem’s bedrock channel.

The availability. of coarse sediment enables frogs 1o
find rocks that can shield egg masses from high flow
velocities.-An analogous sediment supply Tink between
tributaries and main stéms is exemplified in the Pacific
Northwest, where the supply of salmonid spawning
gravels in larger streams is affected by logging prac-
tices (Hartman et al, 1387) as well as by natural erosion
processes in low-order tributares (Bendz et al. 1992).

. At the scale of reaches (e.g., pools and riffles, 10— -

100 m?), frogs selected broad, shallow channels, Breed-
ing sites n;_ith greater than average width to depth ratios
had above-average survival. One explanation for this
result is that the two variablés critical to eggs being
swept off rocks or desiccated, current velocity and
stage, are_less- sensitive to discharge fluctuation in
broad, shallow channels than in deep, narrow channels.

}Veloc_ity increases more slowly with increasing dis-

charge in wide channels than in narrow channels be-
cause of greater channel roughness (Dunze and Leo-
pold 1978). Under conditions of declining discharge,
stage decreases less in a broad channel than in a nar-
rower channel, Alternatively, frogs may have avoided

.deep pools because substrates there were too small for

egg attachment, there was predation nisk from fish (Hol-
omuzki 1995), or algal food resources needed by tad-
poles were absent. Chemicals released by algae, which

stimulate spawning in znother ranid (Savage 1961), .

may be at low conceatration in deep pools. ] .
At the finest scale (e.g., individual cobbles and boul-

'ders, 0.1-1 m?), fmgs_ attached eggs to microsites with
lower than ambient flow velocities. High velocities can.

— 110
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F1g. 8. Sensitivity of stage and velocity to discharge fluctuation at R.-boylii breeding sites with different channel shapes.
Frogs (not drawn to séalej are ovipositing at equal depths in (A) a Jow-survival channel cross section (1:10 vertical exag-
geration}, and (B) a high-survival channel, at discharge 0, = 3 m¥s. At subsequent times (f), discharge can decrease (Qy =
1.5 m’s) or increase (Q, = 4.5 m¥s). Changes in stage (indicated by A) and velodity (v, indicated 1 by £l patiern; percentage
change in velocity is also showu) are relatively smaller in the wider, sha]lower channcl Eggs bccomc l:xposcd to air in the

narrower channel when X dccrcases by 50%

limit fcrtilizatioxvi—’(Pcn':ﬁ.ngtd.n 1985, Denny and:S'lubata
1989, Levitan 1991). Although sperm density and vis-
cosity can counteract diffusion caused by velocity and

turbulence, as has been shown for marine invertebrates

(Thomas 19%4), current veloc:ty must be stow enough
to allow external fertilization. Interestingly, the tailed

frog (Ascaphus truii), one of the few frogs with internal

fertilization and the only frog with au intromittant or-
gan, breeds in the steep gradlcnt, and hlgh vclocny.
tributary creeks at the site,

High velocities also sweep away cluu:hcs. I have

observed clutches that were oviposited at low velocity -

remaining attached as velocities rose >20 cm/s, but not
for sustained periods. When returning to a site that had
experienced 20 cm/s flow for a few days, I wsually
found that all but a few of the-egps in the clutch had
washed away. Thus, it appears that there is a threshold
velocity and duration of exposure beyond which the
egg Jelly loses adhesion, If velocities were high at the

time of oviposition, however, frogs concealed their

clutchcs in low ﬂow mxcrosues undcmcath overhang-
lng portions of la.rgc bouldcrs.- )

N prosmonhnmmg cmd in.s'ronc site
S use n relanon to d:.s‘charge and
temperarurc ’

'R boylu breed carly dunng the transition between
the, wet and dry seasons, despite the likelihood of high-
Iy variable di scha.rgc that' ‘can causc egg mortahty Dis-

* charges equaling those of late May 1993 (20.8 m¥s).

which swept most clutches away, recur at an interval

of =9 yr during the breedmg season, based on 25 years:

of records. Although ldﬂger term data are not available.
it is reasonable to assume that breeding later would
minimize exposure {0 variablé conditions. According-
ly, frogs commence ovipositing later when base flow
is high, and earlier in low-flow years, but this plasticity
may be driven by temperature cues as well as by P
cipitation. At the South Fork Eel, oviposition appeared
to begm once mean water tcmpcraturcs reached =12 C
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TABLE 3 Mumdlmensmnal conungcncy analys:s examin-
ing associations among three sources of mortality for Rana
boylii egg masses: strandmg (S). fungal attack (F), and
predauon P)i in 1992. s

. R GO
. (likelihood
Null hypothesis = - df ratio x%)
P independent of F at all levels of § 2 0,32
P independent of S at both levels of F 2 22.2%%*
F independent of § at both Ievels of P -2 0.16
P indépendent of F and § -3 22.5%%*
F mdependent of P and s’ 3 041
$ independent of| 'Pand F - .3 22 454

. Wk P < .g.p(nr

although R, boylii eggs have been found in water rang-
ing from 9° to 21.5°C. at othcr sites - (Zweifel 1955).
Unlike hylid pond frogs. in which breeding is posmvely
correlated with both warm temperatures and rain (Ritke
et al. 1992), breeding of rhacophond and ranid frogs
in first-and second order Japanese mountain streams is
positively correlated wu:h water temperature but neg-
atwely correlatcd wnh rain (Kusano and Fukuyama
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FiG. 9. Frequeacy of spring discharge (1946-1970) re-
corded at the South Fork Eel River near Branscomb, Cali-
fornia, by the USGS. {A) Maximum mean daily discharge
during.the approximate oviposition periced of R. boylii, 15
April-I June. (B) Channel dewatering rate during the same
period. Arrows indicate magnitude of discharge and dewa-
tering during 1992-1994. The extrapolated recurrence inter-
val for the 1993 increase in discharge is indicated by a ques-
tion mark
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o

) Fig, 10. Daﬂy mean (*1 SE) temperature in the week
’preceding and following the appearance of the first R boylil
egg Mmass. 'I‘wo—way ANOVA resulis for (A) air: Foe =337
df=236‘P——005F —34df—136P
€2 0.0013 Flar « o va. pomoniponinon = 237 &f = 2, 36; P = 0.1;
(B) water: Fﬂ-— 3.6;df = 2, 36 P = 0.04; Flrr. v pouovipoivon
= 42;'df = 1, 36; P-::OOOI F,_
df = 2, 36: P = 0.003.

X pre- Wi post-oripodiion 6.7;

1989, Fukuyama and Kusano 1992). These behaviors
may eéxplain why, during 1994, R. boylii breeding start-
ed earlier and continued >2 wk- longer than in previous

years.

Despite the results in 1992 and 1994 that the ﬁrst
50% of clatches had greater losses to stranding and
scouring than the second 50%, early breeding may be
maintained because of priority advantagcs accrued by
early brccdcrs. For example, late-arriving males risk
finding that all gravid females have already mated and
‘laid their eggs (Wells 1977). Ot'fspnng of early—matmg
frogs also have priority advantages with respect to size
and, hence, competitive ability as tadpoles (Wilbur and

Alford 1985, Morin et al. 1990). Moreover, the phe-

nology of algal blooms in spring and summer {Power
1992a} may create a situation in which food resources
are less abundant for tadpoles not yet metamorphosed
in the fall. Thefe also may be insufficient time for late-
metamorphosmg juveniles to forage and grow in the
fall before winter dormancy. must begin. These conflicts
among selection pressures, when superimposed on
years of varying rainfall and temperature, may serve
to maintain variation in oviposition timing.
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Historic site use appears to be maintained, despite
annual variation in river stage and breeding seasomn.
The heavily used sites in this study have been used for
=25 y1 (P. Steel, Angelo Coast Range Reserve manager,
personal communication), suggesting that these sites
have appropriate habitat at a range of river stages. It
is also likely that these sites have been morphologically
stable during this period. The large boulders dominat-
ing these sites do not move at bank-full discharge, i.c.,
at 1-2 yr recumrence intervals. The force, or critical
shear stress, necessary to move the large rocks prob-
:ably occurred last during storm events of 1964 (W, E.
Dietrich, unpublished data).

Conservation and restoration implications

Amphibians and fish are important components of
biodiversity. Amphibians constitute 28% of all U.S.
animal species that are ranked as exrinct; possibly ex-
tinct, critically imperiled, imperiled, or rare; fish con-
stitute 34% (Master 1990). In rivers, this diversity is
maintained, in part, by variation in hydrologic regime,
as has been shown for fish assemblages (Grossman et
al, 1982, Moyle and Vondracek 1985, Foff and Allan
1995). Under natural low regimes, conditions favoring
recruitment of one species, or set of species, fluctuate

with states favoring recruitment of other species {Star- .

rett 1951, Seegrist and Gard 1972, McElravy et al.
1989). Management strategies should therefore be dy-
namic to respond to species differences in links be-
tween the physical structure and flow regime of a river,
and the population processes of the target arganisms.

Most efforis to manage physical conditions in therivers

of California and Oregon for wildlife benefit have fo-
+ cused on optimizing habitat and discharge for salmo-
nids (Shirvell 1990, Flosi and Reynolds 1991, Nick-
elson et.al. 1992). Additions of spawning gravels and
high-volume releases in-the spring (to trigger spring
spawning runs or to get smolts out to the ocean) tmay
be at cross-purposes to conservation of other species

vulnerable to late-season floods, as is shown here for.

R. boylii. : ‘ Y

If rivers are to be restored, enhancement plans should
contain a heterogeneity of habitats and flow regimes
that can sustain diverse populations. To achieve this
goal, we need data that relate hydrology and channel
morphology to population processes for a broad array
of taxa (algae, insects, turtles, snakes, salamanders,
etc.). Just as the availability of spawning gravels is
recognized as essential for conservation of river-breed-
ing salmonids, availability of frog breeding sites, i.¢.,
broad, shallow channels with stable, large-boulder sub-
strates that do not move under bank-full conditions, are
necessary for R, boylii conservation. Censuses of adult
frogs conducted in midsummer (Moyle 1973, Hayes
and Jennings 1988) may yield a partial picture of the
necessary physical conditions if the availability of
breeding habitat is overlooked.

Specific recommendations for R. boylii conservation

SARAH 1. KUPFERBERG
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foliow from observations of this study. Plans regardip 2
the scale of any project should incorporate the fact thy
breeding habitats are embedded within the drainage
network of the watershed, with heavily Populated
breéding sites Jocated near tributaries that may be im-
portant adult habitats. Channel restoration plans shoulg
include the appropriate heterogeneity of elevations,
grain size, and flow velocities present at repeatedly
vsed, high-survival breeding sites. Specifically, these
channels should mimic the asymmetrical cross-sec.
tional profiles of egg sites, and should have large bou]-
ders that are stable under bank-fult conditions. To pro-
vide protection from discharge fluctiation and to create
oviposition sites at a range of stages, relatively low-
slope benches elevated above the thalweg (main con-
veyance channel) should be included. In addition 1o
sloping toward the thalweg, benches should be graded
to elevale the surface of the water higher at the up-
stream end of the benches, so that tadpoles will follow
the receding water line and end up in the low-flow
channel, Instream aggregate (gravel) mining, which
typically remaves bars and creates a wide, fiat channel,
might be particularly harmful to R. boylii recruitment.
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To minimize loss of breeding habitat, mining shouid . .-

occur in parts of rivers not used for oviposition, such
as deeper pools or reaches with few tributaries, and at
times of year when frogs are more common: in tribu-
taries, i.c., fall and winter. At least in some years, re-
leases of water from dams during the breeding season
(April-June) shpuld be timed to minimize stranding
and scouring mbrtality, because extreme fluctuation in
discharge can lead to the loss of 2 cohort of tadpoles,

“as occurred naturally during the late May flood of 1993.

The absolute maghitude of peak discharge is also im-
portant, becduse the lowest peak discharge year, 1992,
had the highest survival.

As amphibians decline (Wake 1991), we rarely know
whether or not sensitive species, such as R. boylii, are
strong interactors possessing"m_ziquc traits with rami-

fications for other trophic levels. R. boylii tadpoles can
‘enhance macroalgal standing stock on cobbles by re-

moving diatom epiphytes, have negative competitive
effects on benthic invertebrate grazers (Kupferberg
1996}, and are important prey for juvenile aquatic gar-
ter snakes (Thamnophis atratus) (Lind and Welsh 1994;
8. J. Kupferberg, personal observation). Because of
these interactions, as well as this frog’s “susccptibility
to displacement by hon-native bullfrogs (Kupferberg
1996), conservation of R. boylii has implications for
other components of river food webs.
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