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SUMMARY OF RESEARCH PROJECT REPORTS

Bomneville Power Administration
BPA Fisheries Project 82-14

DEVELOPMENT OF NEW CONCEPTS IN FISH EADBER DESIGN

Conducted at the
Albrook Hydraulics Laboratory
Department of Civil and Environmental Engineering
Washington State University
Pullman, Washington 99164-3001

Project Period: June, 198Z-October, 1984

1. Orsborn, John F. 71985. SUMMARY REPORT

2.

A synopsis of the project components was prepared to provide an
overview for persons who are not fisheries scientists or engineers.
This short report can be used also by technical persons who are
interested in the scope of the project, and as a summary of the
three main reports. The contents includes an historical
perspective on fishway design which provides the basis for this
project. The major project accomplishments and significant
additions to the body of knowledge about the analysis and design of
fi shways are discussed. In the next section the research project
organization, objectives and components are presented to
familiarize the reader with the scope of this project.

The summary report concludes with recommendations for assisting in
the enhancement and restoration of fisheries resources from the
perspective of fish passage problems and their solution. Promising
research topics are included.

Aaserude, Robert G. and John F. Orsbora. 1985. NEW CONCEPTS IN
FISHLADDER DESIGN .--Results of Laboratory and Field Research on New
Concepts in Weir and Pool Fishways. (With contributions by Diane
Hilliard and Valerie Monsey).

The drivinq force behind this project, and the nucleus from which
other project components evolved, was the desire to utilize fish
leaping capabilities more efficiently in fishway design. This
report focuses on the elements which were central to testing the
premise that significant improvements could be made in water use,
costs and fish passage efficiencies by developing a new weir and
pool fishway. These elements include: historical review of
available information; optimization of weir geometry; fluid jet
mechanics; air entrainment; energy dissipation in the pool chamber;
and fish capabilities. The new weir and pool chambers were tested
in the field withcoho and chum salmon.



3. Orsborn, John ¥, and Patrick . Powers. 19853. FISHWAYS--AN ASSESSMENT
OF THEIR DEVELOPMENT AND DESIGN. {(With contributions by Thomas ¥.
Bumstead, Sharon A. Klinger, and Walter C. Mih.}

This volume covers the broad, though relatively short, historical
basis for this project. The historical developments of certain design
features, criteria and research activities are traced. Current design
practices are summarized based on the results of an international
survey and interviews with agency personnel amnd consultants. The
fluid mechanics and hydraulics of fishway systems are discussed.

Fishways (or fishpasses) can be classified in two ways: (1) on the
basis of the method of water control (chutes, steps [ladders], o
slots); and (2} on the basis of the degree and type of water contrel.
This degree of control ranges from a patural waterfall to a totally
artificial environment at a hatchery. Systematic procedures for
analyzing fishways based om their- confiquration, species, and
hydraulics are presented. Discussions of fish capabilities, energy
expenditure, attraction flow, stress and other factors are included.

4. Powers, Patrick 0. and John F. Orsbhorn. 1985 ANALYSIS OF BARRIERS TO
UPSTREAM MIGRATION. --An Investigation into the Physical and Biclogical
Conditions Affecting Fish Passage Success at Culverts and Waterfalls.

Fish passage problems at natural barriers {(waterfalls) and artifi-
cial barriers (culverts) are caused by excessive velocity and/or
excessive height. By determining which geometric or hydraulic
condition exceeds the capabilities of the fish, the most promising
correction can be made to the barrier.

No waterfall classification system was found in the literature
which could be applied to fish passage problems. Therefore a
classification system was designed which describes: (1) downstream
approach conditions at the base of the barrier; (2) central passage
conditions as in a high velocity chute oF the leap over a falls;
and (3) upstream conditions where the fish exits the high velocity
chute or lands after leaping past a barrier.

The primary objective was to lay the foundation for the analysis
and correction of physical barriers to upstream migration, with
fishways being one of the alternative solutions. Although many
passage improvement projects are economically small compared with
those at large dams, each year millions of dollars are spent on
solving these smaller passage problems-- and sometimes the money is
wasted due to poor problem definition. This report will assist in
both the definition of the problem and selection of the most
beneficial solution.
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ANALYSIS OF BARRIERS TQ UPSTREAM FISH MIGRATION

ABSTRACT

This paper presents a detailed analysis of waterfalls and culverts as
physical barriers to upstream migration by salmon and trout. Analysis
techniques are based on combining barrier geometry and stream hydrology to
define the existing hydraulic conditions within the barrier. These
conditions then can be compared to known fish capabilities to determine
fish passage success. A systematic classification system is developed
which defines the geometric and hydraulic parameters for a given stream
discharge. This classification system is organized in a format that can he
used to catalog barriers in fisheries enhancement programs. The analysis
compares hydraulic conditions and fish capabilities in detail, as the fish
enters the barrier, attempts passage and exits the barrier. From this
comparison the parameters which prohibit passage can be determined.
Hydraulic conditions are a function of the barrier geometry and stream
hydrology, and the stream flow is constant at the time each step in
analysis is performed. Therefore, the barrier geometry must be modified to
alter the hydraulics to meet fish capabilities. Modifications can he
accomplished by: installing instream "control" structures which deflect
the flow or raise pool levels; blasting to alter or remove rock: and
installing a fishway to bypass the barrier. Modifications should not be
attempted until the amalysis defines the excessive parameters which should

be modified.

xiii



INTRODUCTION

When adult salmon and steelhead trout enter freshwater, maturing fish
stop feeding and rely on energy reserves stored in body fat and protein to
carry them through migration and spawning. The rate of sexual maturity is
estahlished by heredity, and camnot adjust te delay. Barriers which cause
excessive delay and abnormal energy expenditures can result in mortality
either during the migration or in the spawning areas. These barriers can
be natural or artificial, as well as physical, chemical or thermal.
Natural barriers consist mainly of waterfalls and debris jams, and artifi-
cial barriers consist mainly of dams, culverts and log jams. This study
will consider only those barriers consisting of waterfalls or culverts
that partially or totally obstruct salmon and trout upstream migration. In
addition to existing barriers which delay or totally block upstream
migration, spawning areas which were originally accessible have become
inundated by reservoirs and other instream modifications. Therefore,

1t

existing barriers must be modified to further open the "window of passage"
to spawning areas.

The potential for deriving beneflits from alleviating barriers to
migration is high, but im the remote areas where these barriers wusually
exist, the cost of traditional fish ladders and construction methods
usually outweigh the benefits to be gained. Some barriers lend themselves
to simple solutions such as blasting a series of pools to assist fish

passage. Rut in many cases an analysis of the geometric, geologic, hydro-

logic and hydraulic characteristics needs to be made so that alternative




solutions can be generated and compared. Stuart (1964) suggests that the
behavior of migrating salmonids can be correlated directly with the
hydraulic conditions in the stream chamnel. This relationship is the basis
for this study.

Because stream flows and site geometry control stream width, depth and
velocity, the hydraulic parameters are a function of the geomorphic and
hydrologic parameters. Given the geomorphic conditions at a site, con-
sidered to be constant, and the hydrologic conditions which are variable
within a range of values, an analysis of the hydraulic conditions related
to fish capabilities can determine the impact the bharrier has on fish
passage success. These relationships can be seen in the flow chart in
Figure 1. The objectives of this study are to:

1. develop a classification system for waterfail and culvert

barriers;

2. develop methods for analyzimg harriers using site geometry,
hydrology and hydraulics, and by relating the hydraulics to fish
capabilities; and

3. generate "parameter specific" solutions to assist fish past
barriers without the installation of a typical fishway.

It is not within the scope of this study to develop amalytical methods for
more complex barrier structures but to develop the conceptual basis for
these methods. Complex barrier analysis would require extensive field work
and/or physical model testing. It is the author's intentiom to use this
studyas a foundation to further develop analytical methods for analyzing

more complex barrier systems.
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Figure 1. Flow chart analysis of a migration barrier.



Because of the wide variations in the forms of barriers, a classi-
fication system is required to facilitate the analysis and subsequent
generation of solutions to fish passage problems. Evidence of waterfall
classification in the literature points only to a system based om genetic
grounds (Fairbridge, 1968). The writer is not aware of a systematic’
classification system of waterfalls which correlates fish passage success,
The requirements for an adequate classification system include the fol-
lowing:

1. site geometry,

2. hydraulic cenditions, and

3. fish passage success.
Based on these three factors a classification system for waterfall and
culvert barriers was developed to aide in assessing, analyzing and modi-
fying barriers.

Natural rock barriers can be in the form of falls, chutes or cascades.
Falls (Fig. 2) are characteristic of steep (commonly vertical) overflow
sections where the impact of the falling water scours a deep plunge pool at
the foot of the falls. Falls form elevation barriers where the difference
in water surface elevation bhetween the upstream water surface and the
plunge pool, and/or the horizontal distance from the falls crest to the
plunge pool exceeds the leaping capabilities of the pertinent fish species.
Often the leaping efficiency of the fish is constrained by unfavorable
plunge pool conditions. If the pool is shallow, the falling water will
strike the bottom creating violent pool conditions, thus affecting the

fishes' orientation for leaping. Even if a fish has successfully leaped a



falls, it can be swept back due to high velocities and/or shallow depths
above the falls crest. A cantilevered culvert outfall (Fig. 3), where the
fish must leap to enter the culvert, is similar geometrically to a fall.
The only difference is the nature and geometry of the bed over which the

water flows.

FLOW
FLOW
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Figure 2. Profile view of a fall Figure 3. Profile view of a

cantilevered culvert

Chutes (Fig. 4) are characterized by steep, sloping, rough open
chamnels, offering the fish a high velocity medium in which to swim without
resting areas. Chutes form velocity barriers where the water velocity near
the downstream entrance to the chute exceeds the fishes' swimming speed.
Often a standing wave will develop at the foot of the chute. If the
downstream plunge pool is shallow, the standing wave may form too far
downstream for the fish to rest before bursting into the chute. Even if
the velocities down in the chute are within the fishes' swimming speed, the
depth of flow and slope length could prohibit passage. Also, chutes often

pass a bulked mass of water and entrained air which offers a poor medium



for swimming. Stuart (1964) suggests that when flowing water entrains air,
the density of the mixture will be reduced and will detract from the
propulsive power of the fishes' tail and diminish the buoyancy of the fish.
Air entrainment also reduces the stimulus of attraction flows. Chutes with
steep slopes are very similar te culverts (Fig. 5 where the fish must swim
a long slope length. The difference again is in the nature of the bed over
which the water flows, and the shape of the flow area. Culverts do not
offer an irregular natural boundary which can provide an occasional resting

place.

Figure 4. Profile view of a steep/ Figure 5. Profile view of a steep/
kigh velocity chute. high velocity culvert.

Cascades (Fig. 6) are characterized by a reach of stream where large
instream roughness elements, such as boulders and jutting rocks, obstruct
and/or churn the flow into vielently turbulent white water. Cascades often
present fish with high velocities, excessive turbulence, and orientation
difficulties which make it impossible for a fish to effectively use all its
swimming power. If the roughness elements (or boulders) are large, they

will often create periodic resting areas within the cascading reach.



Jackson (1958) noted that the sockeye salmon trying to pass Hell's Gate on
the Fraser River in British Columbia almost succeeded in "eroding their
noses back to their eye sockets" by contact with the bank while trying to

maintain equilibrium in the turbulent water.
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Figure 6. Plan view of a cascade.

Pioneering works in the field of analyzing waterfall barriers has been
conducted mostly by fisheries biologists through methods such as field
sampling by electrofishing, skin diving or just personal observation of
fish passage. No significant research comncerning the fluid mechanics of
waterfalls has been conducted. There has been considerable work done on
culverts to relate depth, velocity and discharge relationships, as reported
by Dane (1978), Evans & Johnston {1980) and others. The obstruction at
Hell's Gate focused a considerable amount of attention on the velocities
and turbulence that sockeye salmon were facing. In that study, river

velocities were measured by two methods:



1. the highest average velocities from the river discharge and the
area of smallest cross section, and

2. average mid-stream surface velocities using a Float.

Highest average velocities ranged from 12.9 to 17.5 fps, but Jackson (1950)
noted that these computed velocities were inaccurate because of the
extremely rough channels at Hell's Gate. The conclusion was that the
combination of turbulence and high velocities prevented the passage of
large rums of sockeye salmon. Clay (1961) suggests the following
engineering field work that is required before design and construction of a
fishway at a fall can be initiated:

1. topographic surveys,

2. record magnitude, direction and location of velocities;

3. locate points of turbulence, upwellings and the intensity and
location of points of surge and how they relate to fish behavior;
amd

4. river discharge measurecments.

Clay also suggests various types of fishways that can be installed at
natural obstructions. He notes that because of the wide range of flows at
a patural obstruction the vertical slot type of fishway should be used
because it can accept a wide range of water level fluctuations while still
working effectively.

Most of the design work on assisting fish past waterfalls without the
installation of a fishway rests in project files. Many of these waterfalls
were observed to be barriers due to shaliow depths, high velocities andfor

elevation drops, and were modified by blasting to try to reduce the



magnitude of these constraints to passage. This study will develop detailed
analysis procedures to generate "parameter specific" solutions to the "real

passage problems” at barriers.



FISH CAPABILITIES

Swimming Speeds

The objective of this section is to document values for the upper
limits of swimming speeds, leaping capabilities and swimming distances for
adult salmon and steelhead trout, and to evaluate their performance in a
format useful for amalyzing barriers. In order to differentiate between
water velocity, fish velocity and relative velocity of the fish to the
water, the term "speed” will be used to denote the rate of motion of the
fish as an object with respect to a reference plane. Relative speed will
denote the difference between fish speed and the velocity of the water,
that is:

VR = VF - VW (1)
where VR = relative speed of the fish to the water; VF = speed of the fish;
and YW = velocity of the water.

Ranqes of speeds are classified in the literature according to the
function, or relative speeds which fish can maintain. The classification

of speeds published by Hoar and Randall (1978) which will be used in this

study, is:
sustained - normal fupctions without fatigue,
prolonged - activities lasting 15 seconds to 200 minutes which
result in fatigue
burst - activities which cause fatigue in 15 seconds or less.

Ranges of speeds for these classification are shown in Table 1 from Bell

(1973).

10



Table 1. Fish speeds of average size adult salwon and steelhead trout as
reported by Bell {1973).

Fish Speed (fps)

Specie Sustainedd Prolonged® Burst

Steelhead 0-4.6 4.6-13.7 13.7-26.5
Chinook 0-3.4 3.4-10.8 16.8-22.4
Coho 6-3.4 3.4-10.6 10.6-21.5
Sockeye 0-3.2 3.2-10.2 10.2-20.6
Pink & Chum3d 0-2.8 2.6-7T.7 7.7-15.0

3Pink & Chum salmon values estimated from leap heights of 3 to 4 ft at
waterfalls.

b Called cruising and sustained, respectively, in Bell (1973).-

Bell suggests that fish normally employ sustained speed for movement (such
as migration), prolonged speed for passage through difficult areas, and
burst speed for feeding or escape purposes.

For determining fish passage success over waterfalls and through
culverts, some percentage of the upper limit of burst speed will be used
which will depend on the physical condition of the fish. To determine
actual values of these percentages, a study was conducted on coho and chun
salmon swimming up a high velocity chute at Johns Creek Fish Hatchery near
Shelton, Washington (see Appendix II). From this study it was concluded
that most of the time the salmon were swimming at 50%, 75% and 100% of
their maximum burst speeds suggested by Bell (1973), depending on the
condition of the fish. These percentages will be used to define :
coefficient of fish condition (Cg.). Values for (¢, are gives im Table 2.
with the corresponding characteristics of each. From Table Z, the actual

speed that should be used for passage analysis is:

11



VE = VFB{Cgc) (2)
where VFB = maximum burst speed suggested by Bell (1973) Table 1; and C¢c

= coefficient of fish condition, Table 2.

Table 2. Coefficient of fish condition (C¢c). Values based on observations
and data taken for coho and chum salmoen at Johns Creek Fish
Hatchery near Shelton, Washington, Becember, 1983.

Fish Condition Coefficient(Cgc)

Bright; fresh out of salt water or

still a long distance from spawning 1.00
grounds; spawning colors not yet

developed

Good; in the river for a short time;

spawning ceolors apparent bhut not .75
fully developed; still migrating

upstream

Poor; in the river for a long time;

full spawning colors developed and 0.508
fully mature; very close to spawning
grounds

a Tﬁgi :19.59, corresponds to the upper limit of prolonged speed from
able 1.

Leaping Capabilities

When fish leap at waterfalls, their motion can best be described as
projectile motion (i.e. curved two-dimensional motion with constant

acceleration). Neglecting air resistance, the equations for projectile

motion are:

b3
H

(Vo cosBlt, and

y = (Yo sin@)t - (1/2)gt2

12



where x = horizontal distance the projectile travels, y = vertical distance
the projectile travels, V, = initial velocity of the projectile, 8 - angle
from the horizontal axis the projectile is fired, t = time, and g =
acceleration of gravity (32.2 ft/sec?). Rewriting the equations for x and
y in terms of the components that relate to fish leaping at a waterfall
vields:

XL = [¥F{cosBL)} 1t and {3}

HL = [VF(sinBL)Jt - (1/2)gt? (4)
where XL - horixontal distance or range of the leap at some time (t), HL =
height of leap at some time {t}, VF = fish speed, 8L = angle of leap from
the plunge pool, and g = acceleration of gravity acting downwards (32.2
ft/secl). By combining equations (3) and (4) and eliminating t from them,
we obtain:

HL = (tan@L)}XL - g{XL)}2/2(VFcosaL)? {5)
which relates HL and XL and is the fish trajectory equation. Since VF, 8L
and g are constant for a given leap, equation (5) has the parabolic form
of :

Bo= b(XL) - C(x1)2
Hence the trajectory of a fish is parabolic. Equation (§) is plotter! in
Figures 7, 8 and 9 for six species of salmon and trout leaping at angles of
HO, 60 and 40 degrees. These leaping curves will be utilized later to
analyze leaping conditions at a barrier. At the highest point of the
fish's leap, the vertical component of the velocity is zero, that is:

¥Fy = VF(sinBL) - gt - O
Solving this equation for t gives:

t = VF(sinBl)/q

13
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Substituting this equation for t into equation (3) and (4) vields:

AL = (VF{sinBL))2/g - (1/2){VF{sinoL)2)/qg
HL = (VF(sinBL))2/2q (6)
XL = VF2(cos@L){sinBL/q) (7)

Equations (6) and (7) give the maximum height of the fish's leap and the
horizontal distance traveled to the maximum height.
Bell (1973) suggests the following formula for computing velocities at

which fish leave the water surface:

VF = (2g(HL))0-5

Solving this equation in terms of the leap height (HL) gives the same
result as equation (6), using a leaping angle of 90° to the water surface.
Aaserude (1984) noted that to determine the true leaping height above the
water surface, the length of the fish should be added to equation (6)
because the fish uses its full propulsive power up until the point the
fish's tail leaves the water, and once in the air skin drag can he neg-
lected. Since equation (6) and (7) do not include the additive effects of
fish lemgth or an upward velocity component often found at the foot of a
waterfall in the form of a standing wave (Stuart, 1964), they will be used

here as conservative values from the accepted literature.

Swimming Performance

Swimming performance is a measure of the speed which a fish can
maintain over a period of time (endurance). The distance a fish can swin

is a function of the water velocity, fish speed and fatigue time. Bell
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(1973) suggests that burst speed can be maintained-for an estimated 5 to 10
seconds. Relating this range of fatigue time to the range of burst speeds
from Table 1, the swimming distances can he computed from:

LFS = (VF - VW)TF (8)
where LFS = length the fish can swim, VF = fish speed, VW - water velocity,
and TF = time to fatigue. Equation (8) is plotted in Figures 10, 11 and 12
for six species of salmon and trout. An example calculation will show how
these fipgures were derived.

Specie: steelhead

Burst Speed Range: 13.7 to 26.5 fps

Fatigue Time Range: 5 to 10 seconds

Water Velocity: 10 Ips

Coefficient of Fish Condition: 0.75

LFS = [26.5 (0.75) - 10]5 = 49 ft, or

LFS = [13.7 (0.75) - 10]10-=3 ft.
Therefore the maximum distance an adult steelhead trout cam swim given the
condition of the fish and a mean water velocity of 10 fps, is 49 ft. This
calculation assumes the water depth to be great enough to submerge the fish
and that no air is entrained in the flow. The results are in Fig. 12.

Evans and Johnston (1980) suggest that the distance the fish can swim

against a given water velocity is best defined by the curves prepared by
Ziemer (1961) which reflect the swimming performance of salmon, steelhead,
and smaller trout (Fig. 13). This curve was developed assuming a relative
fish speed (VR) of 2.0 fps. From the study reported in Appendix I], it was
determined that the average relative speeds for coho and chum salmon

swimming up the velocity chute were 1.9 and 2.1 fps respectively, but
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ranged from values of 1.0 to 3.0 fps. Because of this wide variation, it
appears that calculating the maximum distance a fish can swiwm by simply

using relative fish speed does not accurately describe the magnitude of a

single passage attempt.

Water Velocity{fps)

25 Cfe 2 .00 STEFLHEAD
20 Cfe  0.76 TROUT
15
rm———— Lofc. .- 0.50
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3 _ i . .
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8 10 20 30 40 80 100 180

Maximum Swimming Distance(ft)

Figure 10. Maximum swimming distance for steelhead trout under three fish
conditions.
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"Any factor interrupting or affecting the supply system (oxygen
intake) as well as those affecting the propulsive system itself, affects
swimming performance” (Webh, 1975}, Both of these conditions exist when
there is insufficient water depth to submerge the fish while it is swim-
ming. Partial submergence impairs the ability of the fish to generate
thrust normally accomplished by a combination of body and tail movement.
Also, if its gills are not totally submerged, they cannot function effi-
ciently, promoting oxygen starvation while also reducing the fish's ability
to maintain burst activity. Evans and Johnston (1972) suggest a minimum
water depth of 6 in for resident trout and 1 ft for salmon and steelhead.
Bryden and Stein (1975) state "In all cases, the depth of water should be
sufficient to submerge the largest fish attempting to pass." This limit-
ation will be used in analyzing barriers, because this would be the
winimum depth requirement without affecting the fish's propulsive system.

It is important to note that the values of fish speeds suggested by
Bell (1973) are for fish swiming in water without entrained air (black
water) . In extreme cases of sufflation the density of the water/air
mixture (white water) will be reduced and detract from the propulsive power
of the fish's tail, reducing its speed. To summarize the equations that
describe the capabilities of fish in terms of swimming speed, leaping
capabilities and swimming performance, Table 3 is provided with a nomen-

clature of terms.
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Table 3. Fish capability equations for swimming and leaping.
Type of Motion Equation
VR = VF - VW ()
Swimming VF = VFB(Cgc) (2
LES = (VF - VW)TF (8)
HL = [VF (sin0L)12/2g (6)
Leaping
XL = VF2{cosBL}{sin0L)/g (N
where:
VR = relative swimming speed of the fish,
VF = fish speed,
V¥ = water velocity,
VFB = burst speed of fish,
Lfe = coefficient of fish condition,
LFS = maximum swimming distance of fish,
TF = time to fatigue,
L = height of leap,
XL = horizontal distance of leap at fish's high point,
BL = angle of leap from water surface, and

= acceleration of gravity (32.2 ft/sec?).
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CLASSIFICATION OF BARRIERS

To facilitate analyses and subsequent generation of solutions to fish
passage problems a classification system needs to be introduced to define
the parameters involved in the analysis. The ohjective of this chapter is
to develop a systematic method for classifying barriers based on the con-
ditions that affect fish passage success. Barrier classification sheets
will be developed to enable fisheries personnel to make use of the classi-
fication system in fisheries emhancement programs, both to catalog water-
fall and culvert barriers, and to design their modifications.

Evidence of classification for waterfalls in the literature was found
only in terms of the site geomorphology {or origin of formation)
(Fairbrige, 1968). No classification of waterfalls. could be found in the
literature that correlated site hydraulics or fish passage success to
geometry. Pryce-Tamnatt (1937) noted, "Obstructions are many and varied.
It would be useless to attempt to classify them beyond distinguishing

between the comparatively mild, the definitely difficult, and the com-

pletely impossible.” Dane (1978) suggests a classification of obstructions

for culvert barriers based on hlockage as follows:

1. Total--impassable to all fish all of the time,

2. Partial--impassable to some fish all of the time, and

3. Temporary--impassable to all fish some of the time.

The classification system developed for this study will analyze the
site geometry and hydraulics, and how they interrelate to fish passage

success. Because waterfalls in nature cossist of such a wide range of
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geologic and hydrologic combinations, a classification system for water-
falls should include several components, each of which describes waterfalls
differently.

The classification system proposed here consists of four components:
(1) class, (2) type, (3} magnitude and (4) discharge, extending from
general to specific (Table 4). Class describes the flow patterns, number
and characteristics of fish passage routes and site geometry in plan view.
The class is determined by observing the characteristics in Table 4. Type
describes the bed slopes, pool depths and gecmetry of the barrier in
longitudinal profile, and therefore requires an engineering survey of the
barrier site. Magnitude describes the elevation differences, water velo-
cities and slope lengths the fish must negotiate. Because the class, type
and magnitude of the barrier will vary with discharge, the fourth item for
classification will be to accurately estimate or measure the discharge at
the time of observation.

Also, a degree of passage difficulty rating will be applied, based on
a range from I to 10, one being the least difficult to pass and ten the
most difficult. This is a subjective comparative raating of barrier class
characteristics in reference to fish passage difficulty which is indepen-
dent of bharrier height and velocity. The rating is based on the following
assumptions:

1. The differential elevation and water velocities are within the
swinming and Ieaping capabilities of the species in guestion.

2. At higher swimming speeds {(>8 fps) leaping is more energetically
efficient that swimming (Blake, 1983).

3. Fish will be attracted to the area of highest momentum (flow x
velocity) when migrating upstream; therefore if multiple paths arc
present the fish may try to ascend the one with the highest
attraction which will be created by the highest combination of
drop, velocity, and discharge.
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4. Turbulent flow (or white water) with surges, boils and eddies make
it difficult for fish to orientate themselves and make full use of
their swimming power.

Table 4. Characteristics of barrier classification components.

Classification Component Characteristics

Site geometry in plan view.
Flow patterns

Number of fish passage routes.
Characteristics of fish passage
routes.

Class

Site geemetry in profile.
Type Bed slopes
Pool depths

Elevation drops
Magni tude Water velocities
Slope lengths

The flow rate at which the class,

Discharge type and/or magnitude were measured.

Class

Waterfall barriers in nature are usually found in three forms; falls,
chutes and cascades. From the author's field observations of many
harriers, it appears that fall barriers are found either as single or
multiple falls, chutes as either simple o complex, and cascades as boulder
cascades or turbulent cascades. Combinations of falls and chutes will be
denoted as compound barriers. These barrier classes and their charac-
teristics are shown in Table 5 with their corresponding rating for degree

of passage difficulty.
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A single fall has the lowest degree of difficulty rating (DDR)} because

the fish has only one route to choose, and it leaps to pass. To determine
the actual value of the DIR of 1 to 3, the upstream and downstream con-
ditions must be analyzed. This will be done when barriers are classified by
type. Multiple falls (falls in parallel) have a higher DDR than single
falls because the fish has several routes from which to choose, and most
likely will be attracted to the fall with the highest flow momentum
(Stuart, 1964). Simple chutes have a slightly higher DDR than single falls
because at high swimming speeds (>9 fps) leaping is more energetically
efficient than swimming. Complex chutes have a higher DDR than simple
chutes because the fish’'s propulsive power is reduced in white water.
Poulder cascades have a slightly higher DDR than multiple falls because the
fish have problems getting orient to Jeap due to the turbulent resting
areas. This analysis can be continued,, comparing each barrier class based
on the four original assumptions, feor the degree of difficulty rating
system.
Type

To classify barriers by type, conceptual models will he used which
show the geometric and hydraulic relationships that are critical to fish
passage success. Fiqures 14 and 15 show conceptual models and the notation
used in profile view of a fall and chute respectively. These fiqures are
not comprehensive for natural conditions, but the geometric dimensions
apply and can fit any situation. Cascades are not included here because to
determine the type of barrier requires measurements of bed slopes and pool

depths. If these measurements could be made in a cascading reach, then a
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cascade would simply consist of a series of falls-and/or chutes and there

would be several different types for one barrier class (i.e. several falls

and/or chutes within a cascade).

Table 3. Subjective comparative rating of barrier class characteristics in
reference to Fish passage difficulty, independent of barrier

height and velocity.

Assumes passage success by strongest fish.

Class

Characteristics Pegree of Difficulty

Range

Single falls

Multiple falls

Simple chute

Complex chute

Boulder cascades

Turbulent cascades

Compound

Entire stream {lows through a
single opening offering one path
for fish passage.

Flow divides through two or more
channels offering the fish with
several passage routes of varying
difficulty.

Unvarying cross sections and
constant bottom slope (steep), with
supercritical flow at all stages

Varying cross sections, several
changes in bed slope and/or curved
alignment in plan view.

White water at all stages.

Large instream boulders which constrict
the flow creating large head losses
from upstream to downstream sides of
boulders. Intermediate resting areas

in very turbulent pools.

Large instream roughness elements or
jutting rocks which churn the flow
into surges, boils, eddies, and
vortices. No good resting areas.

Combinations of single falls and/or
simple chutes (e.g., culvert with
high velocity and outfall drop)

1-3

3-5

2-4

4-6

3-7
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Figure 14.

LF

dpp

Conceptual model of a fall, where: A = point on fish exit bed
slope where critical depth occurs;B = elevation of crest; € =
furthest point upstream on bed of plunge pool; B = point just
downstream of falling water (or standing wave) on bed of plunge
pool; Se = fish exit slope; Sp = fish passage slope; dc -
critical depth (point A); dpp = depth in the plunge pool; dp -
depth the falling water plunges; X = horizontal distance from
the crest (point B) to standing wave (point D); Fil = fall
height; § - change in water surface elevation; and LF = length
of fish,
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Figure 15.

Conceptual model of a chute, where: A = point on fish exit bed
slope Where critical depth occurs; B = elevation of crest; ( =
furthest point upstream on bed of plunge pocl; I = point just
downstream of standing wave (or hydraulic jump) on bed of
plunge pool; Se = fish exit slope; Sp = fish passage slope; LS
= length of slope; dc = critical depth (point A); dw = depth of
water; dpp = depth in the plunge pool; and H = change in water
surface elevation.
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The conceptual models in Fiqures 14 and 15 consist of three zones: (I)
the fish exit zone (point A to point B in Figure 16); (2) the fish passage
zone (point R to point C in Figure 17); and (3) the fish entrance zone
{point € to point D in Figure 18). The notation used to denote the
barrier type is given in these figures, and follows outlining logic from

upstream to downstream. The type of barrier will be determined by meas-

uring the exit slope, passage slope and plunge pool depth, and selecting
three characters from the notation, one each from the exil zome, passage

zone and entrance zone (e.g. IIBZ2, would denote a chute barrier with a

positive exit slope and a shallow plunge pool}. From Figures 16, 17 and 18

it can be seen that there could be any of four different combinations of
entrance and exit comditions for each of four passage zones; and thus 16
different types of barriers can exist according to this classification.
These models are shown in Figure 19, along with the corresponding degree of
passage difficulty rating. The similarities with culvert flow and qeometry
are denoted by dotted lines.

Magnitude and Discharge

To complete the classification, estimates of differential elevations,
water velocities, length of slopes, etc.. should be included, along with
estimates of the discharge at the time of observation andmigration season
flows. These two components along with the barrier class and type then can
be combined together to give the final barrier classification. A sample
barrier classification sheet is shown in Fig. 20. This sheet can be usea
in the field to classify barriers and will be helpful in assessing design

modifications.

1 In profile, but one must consider the flow pattern in plan view because it
can cause disorientationm of the fish.
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FISH EXIT/WATER INLET SLOPE POSITION NOTATION

FYow' \3 l

AB {Good)

I
{Poor)

Figure 16, Fish exit zone notation, where: I- megative or nonsustaining
slope at the fish exit (or water inlet). Good conditions for
fish, reduced velocities, increased water depth therefore good
resting areas, Il= positive or sustaining slope at the fis
exit {(or water inlet). Poor conditions for fish, increased
velocities, decreased depths and therefore poor resting areas.
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FISH PASSAGE/WATER TRANSITION ZONE

Figure 17.

NOTATION

A (fall)
(simple)

B {(chute)
(simple)

C {chute/fall)
(compound)

3 (fall/chute)
(compound)

Fish passage zone notation.
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FISH ENTRANCE/WATER EXIT ZONE NOTATION

I""\———m-—'-—-—l
-
¢

2k - :
dpp ' {Good)
&
D

FLOW
M I

I.____../v | 2
ll ! ' {Poor)

Figure 18. Fish entrance zone notation, where: 1 = deep plunge pool.
Good conditions for fish, sufficient depth allows dissipation
of falling water energy and standing wave to develop. Good
leaping conditions. 2 = shallow plunge pool. Poor comditions
for fish, fallimg water strikes bed of plunge pool, creates
turbulence and moves standing wave downstream. Pogr leaping
conditions.
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cuivert

M ——— ——— ———

5
i
s i
H
FLOW
A B
C D c 5
TYPE: FA1 TYPE: JE O |
DEGREE OF DIFFICULTY: 1 PEGREE OF DIFFICULTY: 2

C D c

D

TYPE: T AZ TYPE: 1T A 2
DEGREE OF DIFFICULTY: 2 DEGREE OF DIFFICULTY: 3

Figure 19. Conceptual models of barrier types with the corresponding
degree of difficulty rating.
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TYPE: 1B 1 TYPE: I B 1
DEGREE OF DIFFICUTY: 2 DEGREE OF DIFFICULTY: 3

TYPE: 1132 TYPE: 1 B 2
DEGREE OF DIFFICULTY: 3 DEGREE OF DIFFICULTY: 4

+ Figure 19. (Cont.)
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TYPE: ICT1
N TVPE: 1 c 1
DEGREE OF DIFFICULTY: 3 DEGREE OF DIFFICULTY: 4

TYPE:  1C2
i TYPE: 1l ¢ 2
DEGREE OF DIFFICULTY: 4 DEGREE OF DIFFICULTY: 5

Figure 19. (Cont.)}



TYPE: 11 TYPE: H I 1
DEGREE OF DIFFICULTY: 5 DEGREE OF DIFFICULTY: 6

TYPE: ID2 TYPE: 1 & 2
DEGREE OF DIFFICULTY: 6 DEGREE OF DIFFICULTY: 7

Figure 19. (Cont.}
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SITE: DATE:
LOCATION:

T T e i — SITE SKETCH

[ T e i . e ~
- T me.._.-;ttwm B—
B _:;f;_;f.‘_i_ e
I Ao T
T ,LMWMM LTI
Bl vt e

CLASS:

TYPE:

DEGREE OF DIFFICULTY:
MAGNITUDE:

DISCHARGE:

COMMENTS:

Figure 20. Sample barrier classification sheet.
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ANALYSIS OF BARRIERS

For determining fish passage success at waterfall and culvert barriers
the hydraulic conditions must be evaluated and related to fish capabilities
for the species in question. This chapter contains a detailed amalysis of:

1. plunge pools (fish entrance zone);

2. landing conditions (fish exit zome);

3. falls (fish passage zone); and

4. chates (fish passage zone};
and a discussion of the parameters which prohibit fish passage in
cascades.

The most complicated aspect to anmalyze in barriers is determining how
white water and turbulence affect the fish's swimming and leaping capabil-
ities. Turbulence in "fluid mechanics" terms occurs when the viscous
forces are weak relative to the inertial forces. The water particles move
in irregular paths which are neither smooth nor fixed but which in the
agqregate still represent the forward motion of the entire stream. In open
channel flow, turbulence is present if the Reynolds number R - {VL)}/v is
large, say greater than 500 (Chow, 1959). For this study, turbulence will
be used to visually describe flow patterns which are in a constant changing
state of surges, boils, eddies, upwellings and vortices. Jackson (1950),
noted turbulence deflects a swimming fish from its course, causing it to
expend energy resisting upwellings, eddies, entrapped air and vertices,

which in turn make it impossible for a fish to use its swimming power
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effectively. Stuart (1964) noted that the only known effect turbulence has
on fish is that the reduced density of the air-water mixture reduces the
propulsive power of the fish's tail.

Because of the violence in turbulent flow and the effect it has of
reducing fish capabilities, it will be assumed for this study that any
waterfall that is steep enough to accelerate the flow into violent tur-
bulent white water is a total barrier to all fish species attempting to
swim up the barrier. Fish can only pass if they leap and clear the area of
turbulence before landing.

The analysis presented in this section is applicable to all waterfall
and culvert barriers as long as the parameters needed for ithe analysis can
he measured or estimated within ranges of practical values.

Plunge Pool Requirements

The behavior of a falling jet of water as it enters a pool depends to
a great extent on the pool depth. If the pool is shallow the jet may
strike the bottom and be deflected downstream. A good takeoff pool is
essential if fish are to leap to any height. If the turbulent pool
conditions created from the falling water impacting the shallow pool
prevent a good take off, a relatively low fall may act as a total barrier.
If the pool is deep enough to absorb the falling water, a standing wave
will form, which assists the fish's leap, in the form of a vertical
velocity component created by the pool surface
(Aaserude, 1984). Air bubbles are created by the mixture of air and water
as the falling water impacts the surface and entrains large gquantities of

air.
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At falls and chutes aeration reduces the impact force of the falling
water. The energy of a fall can be mostly dissipated due to transformation
of aerated water into mist. At falls of medium height, but beyond the
range of the fish's leaping capabilities, the impact produced by the
emulsion of air and water may be reduced so that a false clue to the actual
fall height is obtained by the fish. Stuart (1964) observed numerous
salmon leaping over a period of several hours, constantly attaining a leap
height of 4 to § ft, at a high impassable fall of around 30 ft; but the
height attained by the fish was much less than the recorded maximum at
other passable falls because of the reduced attraction flow.

Stuart (1964} suggests a ratio exists between the fall height (the
vertical distance frow the falls crest to the plunge pool surface) and the
plunge pool depth which provides the best standing wave for leaping. He
identifies this ratio as 1:1.25 (fall height/plunge pool depth). Aaserude
(1984) studied standing waves and concluded that the character of the
standing wave is closely related to the jet shape which strikes the plunge
pool, and the depth of plunge can be estimated as 5.5 (d), where d is
defined as the diameter of the circle that can be superimposed completely
within the boundaries of the jet cross-section at the plunge pool surface.
Stwart's ratio does not consider jet shape.

From a research project the author participated in observing fish
leaping over weirs at Johms Creek Fish Hatchery, near Shelton, Washington
(Aaserude, 1984), it was concluded that two conditions should be satisfied
to provide optimum leaping conditions in plunge pools:

1. depth of penetration of the falling water (dp) should be less than

the depth in the pluage pool (dpp)., and
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2. depth of the plunge pool must be on the order of, or greater than,

the length of the fish (LF) attempting to pass.
These two conditions assure the plunge pool will be stable with sufficient
depth so the fish's orientation and propulsive power will be unimpaired.

The relationships for analyzing a plunge pool are shown in Table 6.

Table 6. Relationships among plunge pool depth, depth of plunge and fish
length for optimum and poor leaping conditions.

Bepth and fish length relationships Effect on fish

1. dp dpp Turbulent pool condition
disorients fish.

Standing wave reduced and
moved downstream from where
the falling water strikes the
bed of the plunge pool.

2. dp < dpp
a, LF > dpp Propulsive power of fish’s
tail may be reduced for
leaping.
b. LF < dpp Optimum plunge pool
conditions.

where: dp = depth the falling water plunges beneath the pocl surface,

dpp = depth in the plunge pool measured at the point of plunge,
and
LF = length of the fish attempting to pass.

Landing Conditions

When fish leap at waterfalls, often the landing conditions near the
crest are such that the fish may be swept back by high velocities, or

unable to propel themselves in water depths less than their body depths,
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where they are not totally submerged. Stuart (1964) notes that when fish
leap towards the crest of a waterfall, they are geared for immediate
propulsion when they land. The slightest delay in reaction would cause the
fish to lose ground and be swept back over the waterfall. He also observed
fish landing near the crest, relaxing their swimming effort immediately if
they began to lose ground, and then were swept backwards. Even if fish are
successfully passing a given waterfall, improvements of the landing
conditions can reduce stress on the fish and further open the "window of
passage” .

If the velocity and depth of flow near the crest cannot be measured
for a range of stream flows, an analysis near the crest of a fall or chute
can be made by locating the point of critical depth and measuring the
channel cross section at that point. Critical depth in open channel flow
is that depth for which the specific energy (sum of depth and velocity
head) is a minimum, and the Froude number Fr = V/(gL)I/Z. is equal to
unity. Critical depth is also a "stream control,” which determines a
depth-discharge relationship. If the fish exit bed slope (Sg) is negative
{increases in elevation in the direction of flow) critical depth will occur
at the crest for a fall or chute. If the exit slope is positive (dec-
reases in elevation in the direction of flow} critical depth will occur at
the crest for a chute, but will occur some distance upstream of the crest
for a fall. 1If critical depth does not occur at the crest, the following
steps will locate the point where critical depth occurs:

1. measure the mean depth of flow some distance upstream of the

crest,
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2. calculate the equivalent pool elevation from
pool elevation = bed elevation + measured
depth of flow + hydraulic depth/Z, where:
hydraulic depth = cross sectiomal area
divided by the top width,

3. measure the pool elevation some distance upstream of the crest
where the water is quiet,

4. if the pool elevation (measured) = pool elevation (calculated) the
critical depth occurs at the point where the depth of flow was
measured, and

5. if the pool elevation (measured) > pool elevation (calculated),
move farther upstream and return to step 1.

This analysis is required because of the effect of the approach
velocity. As Se increases from zero to some pusitive value the approach
velocity will increase and critical depth will occur further upstream. If
the fish exit slope is steep and thus flowing at supercritical flow,
critical depth will not be reached and the landing condition should he
analyzed as a velocity chute.

It can be shown mathematically (Henderson, 1966) that critical depth
occurs in any channel shape when:

0279 = A3/W (9
where { = total stream discharge in cfs, W = surface width of the waterway
in ft, g = acceleration of gravity in ft/sec?, and A = flow area of the
cross section. Since most matural chamnels are of irregular shape and can

be composed of several distinct subsections, the solution of equation (9)
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for rectangular and triangular sections will -allow computation of the
discharge as a function of the critical depth for amy irregular channel
shape. For rectangular shapes:

Q - (A3g/W)0-5
but A - W{dc) whete d¢ = critical depth in ft, so substitution yields:

Q= (W(g)0-3(d)1-=,
and using g = 32.2 ft/sec? vields:

Q = S7{WY (1.5 (10)
For triangular shapes the substitution is:

A = Wldc)/2
which yields the following equation for triangular shapes:

0 = 2W(deyi-5
Rut substituting W = d./S where § = slope of one side of a triangle in
percent yields:

g = [2(dc)2-5)/s (11

{ince the discharge has been solved as a function of the critical
depth, substitution of a range of migration flows will give the critical
depths, which can then be compared to the fish depth (df) to determine if
the fish will be totally submerged. Also, the meam velocities can be
calculated from:

ve = WA, (12)
where V¢ = mean velocity at critical depth, § = stream discharge, and A =
cross sectional flow area.

Optimum leaping conditioms exist when the water velocity near the
crest is less than or equal to the sustained swimming speed (VFS) for the

species in question, and the depth of flow is greater than the fish depth.
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At sustained speed, fish can function normally without fatigue (Hoar and
Randall, 1978), and therefore are able to swim whatever distance is
required before locating a resting area. If the water velocity is greater
than the sustained swimming speed, the landing conditiens should he
analyzed as a chute because the distance the fish can swim will decrease as
the water velocity increases above the sustained speed.

The relationships for analyzing the landing conditions at the crest of
a fall or chute are shown in Table 7. An example calculation will show how
this analysis cén be used.

Tablie 7. Relationships between fish depth, critical depth, mean velocity
and sustained swimming speed for optimum landing conditions.

Velocity, depth relationships Effect on fish
1. df > d¢ Propulsive power of fish will be
reduced
2. df < dc
a. Yo > VFS Landing conditions should be
analyzed as a chute
b. Yq < VFS Optimum landing conditions
Where: df = depth of fish,
de = critical depth calculated from a range of migration flows
(equation 9) if d; occurs close enough te crest for fish to
reach, or

= depth near the crest where fish may land if the critical
depth occurs too far upstream for the fish to reach,

Vo = mean velocity at critical depth if critical depth occurs
close enough to crest for fish to reach, or

= mean velocity near the crest where fish may land if the
critical depth occurs too far upstream for the fish to reach,
and

VFS

H

sustained swimming speed for the species in question from
Table 1.
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Example: Given the irregular channel shape in fig. 21, determine the
discharge (0) in cfs as a function of the critical depth (dc)
assuming critical depth occurs at the crest, and calculate the
critical depth that will occur at migratien flows of 5, 20 and 50
cfs, and the correspondig mean velocities from equation 12. Using

Table 7, determine the effects on an adult steelhead trout with a

maximum fish depth (df) of 0.5 ft.

Figure 21. Irregular crest shape used for landing condition analysis
example.

The channel shape in Fig. 21, can best be represented by the combination of
a rectangle (section 1} and a triangle (section Z). Therefore:

Ototar = Q1 + Q2
where: (1 = 5.7(M} dcl‘S, from equation {10}, and Q7 = {Z(d{;]z“S]/S from
equation (11}.Substituting, W = 5 ft and § = 0.50 yields:

01 - 28.5(dc)1+5 and (2 = 4(dc)2-5.
Therefore, the discharge as a function of critical depth is:

Q = 28.5(dc)1-5 + a(d)?-5.

Substituting § = 5, 20 and 50 cfs, and selving for d, and V¢ gives:
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0 (cfs) de  (ft) Ve (fps)

K] .30 3.1
20 0.74 4.7
50 1.30 6.1

From Table 1, the sustained swimming speed for steelhead is, VFS = 4.6 fps.
Using Table 7, the effects oa fish are:

1. At 5 cfs; d¢ > de and

2. At 50 cfs; Vo > VFS.

The only discharge which provides good landing conditions from Table 7 is
20 cfs. At the other twe flow rates, passage will not be blocked, but a
higher passage success rate may be obtainable if these conditions were not
present.

This example assumes the fish lands at critical depth, and therefore
is not applicable if critical depth occurs some distance upstream of the
crest. In that case the fish would land in higher velocities and shal-
lower depths between critical depth and the depth at the falls crest.

In summary, for analyzing landing conditions near the falls crest, the
following factors must be considered:

1. The depth of flow where the fish lands must be equal to or greater

than the depth of the fish.

2. The velocity where the fish lands should be within the range of

the sustained swimming speed for the species in guestion.

3. The velocity and depth should be analyzed under a range of fish

migration flows.
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Analysis of Falls

The most obvious obstruction at falls is when the change in water
surface elevation between pools (i) exceeds the leaping height (HL.) of the
species in question. For Pacific salmon and steelhead trout, the highest
calculated height of leap from level pool using equation (6) and 8 = 90°
is 10.4 ft (steelhead). Therefore, falls where the change in water surface
elevation is in excess of 11 ft can be considered for all practical
purposes a total barrier to all species of Pacific salmon and steelhead
trout. Evans and Johnstone (1980) suggest for natural bedrock waterfalls
that if the vertical drop is more than 6 feet, it should he considered to
he a barrier for salmon and steelhead without further study.

Often, though, the actual distance the fish must leap is greater than
the vertical drop between pools. Unless the water is falling vertically,
some horizontal component of the leap (XL) will be required for successful
passage. If the horizontal distance the fish must leap cannot he measured,
and the geometry of the falls is such that the water breaks off the crest
and is unobstructed until it strikes the plunge pool, then this distance
can be calculated. The calculation requires knowledge of the velocity of
the water and the angle of trajectory at the crest (Fig. 22). An example
of where this analysis would apply is at a cantilevered culvert outlet.
Using the equations for projectile motion, developed in the fish capability
section, the horizontal distance the water travels before striking the
Plunge pool can be calculated from:

XP = VW [cos{@W.)]t (13)
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where XP - horizontal distance from the crest to the point of the falling
water, VW, = velocity of the water as it leaves the crest, 84 - angle at
which the water leaves the crest at in relation te the horizontal,and t =
time. To use equation (13), measurements of VW, and 8W. are required
before t can be calculated from:

s DV (sin@Wc )it - (1/2)gt? (14)

AR

FPFLIARNNEN

XP XSW

Figure 22. leaping analysis parameters.
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where H = change in water surface elevation (measured), and g = acceler-
ation of gravity (32.2 ft/sec?). If the approach flow is from a negative
ononsustaining slope (rises in the direction of flow) then B8W. < 0, and
equation (14) can be solved as a function of t, or:

t = [2(H)/970.5,

and XP = VW [2(H}/g]0-® (15)

If the approach flow is from a positive or sustaining slope (elevation
decreases in the direction of flow) then 8W. > 0, t must be found by using
the quadratic equation, and then substitute t into equation (13) to selve
for XP. Once XP has been determined, adding the distance from the point
where the falling water strikes the plunge pool to the standing wave (the
point just downstream of the falling water from which fish most likely
leap) gives X.

This analysis shows that even if the height the fish can leap (HL) is
greater than the change in water surface elevation {H), and X is greater
than XL, then a leaping fish will not reach the crest at the top of its
leap. It will either fall short of the crest on its way down or reach the
crest as it continues upstream on its descending parabolic path. These
conditions are shown in Figure 23 for a steelhead trout. If the water
surface profile of a barrier is superimposed on the fish leaping curves
(Figure 23), the possibilities for a successful leap at a given leaping
angle can be amalyzed. The wide solid line shown is a falls barrier on
CLidoradoCreek in Idahe (Figure 24). The distances H and X were measured
at the site. It can be seen from Figure 23 that a leaping angle of 60
degrees would allow passage. 80 and 40 degrees fall short of the crest by

about § ft.
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One parameter that has not been discussed as yet is the leaping angle
(6LY. It is the auther's opinion, from observations of coho salmon
leaping, that the angle at which the fish leaves the standing wave depends
on the location of the waterfall crest with respect to the standing wave.
Stuart {1964} observed that fish aimed at sharp boundaries between light
and shade when leaping. This sharp bhoundary can be found at waterfalls
where the contrast at the houndary befween walter and background is clearly
visible. This alsa cafrcides with the theory that leaping ceases abruptly

at dusk and under heavily pvercast conditions. To estimate the leaping
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angle, looking again at Figure 23, for a water surface slope of 29° the
optimum leaping angle was 60°. Since the fish is sighting the crest from
some horizoatal distance of 12.3 ft and a vertical distance of 6.7 ft the
angle is some function of X and 0. For this example in Figure 23, solving
for § as a function of X gives:

H/X = tan 8L = tan 60° = 1.73

where H = change in water surface elevation, X = horizoental distance from
the point where the fish will leap (or standing wave) to the crest, and 6L
= leaping angle. Holding X constant and solving for § gives:

H= X(1.73) = 12.3{1.73) = 21.3 ft
Since the measured value of H was 6.7 ft, this value is approximately 3
times larger than the measured H. This is because the fish does not leap
on a straight line, its path is parabolic and therefore to reach the crest
the optimum leaping angle, 6L, should be:

oL = tan~! [3(H/X)) (16)
This is the leaping angle equation.

Table 8 describes the two conditions that must be analyzed to deter-
mine whether or not a fall is a barrier, assuming the plunge pocl and

landing conditions are not adverse,
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Table 8. Conditions for amalyzing a fall assuming-plunge pool requirements
and landing conditions are satisfied.

Water Surface Drop and Leaping Form of Barrier
Capability Relationships

1. B-HL elevation barrier
2. H<HL
a. X>XL (Superimpose water surface passable or horizontal
profile on fish leaping distance barrier

curves, Figures 7, 8 and Y)
b, XX passable

Where: H change in water surface elevation (measured},

i

HL

¥

height the fish can leap from Equation (6),
X = horizontal distance from the crest to the standing wave, and

XL = horizontal distance of the fish's leap at the highest point of
the leap from equation (7).

Analysis of Chutes

In natural streams uniform flow is rare. However, the uniform-flow
condition is frequently assumed in the computation of flow in matural
streams. The results obtained are approximate and general, but offer a
relatively simple and satisfactory solution for analyzing the velocities
fish must swim against. Laminar uniform flow rarely occurs in natural
channels, so turbulent uniform flow should be used for all wvelocity
calculations in chutes,

From the definition of chutes, the flow must be supercritical down the
chute (Froude number is greater than unity). At the start of the chute the
flow will pass through critical depth and then into a transition zone of

varied flow for some distance before uniform flow is established. [If the
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chute length is shorter than the tramsition length required to reach normal
depth, uniform flow cannot be attained. The length of the transition zone
depends on the discharge and on the physical conditions of the channel,
such as entrance condition, shape, slope and roughness.
For hydraulic computations the mean velocity of a turbulent uniform
flow in chutes can be expressed by Mannings equation
v = (1.49/n)(R)0-67(5,)0.5 (17)
where V = mean velocity of flow in fps, 1n = empirical roughness coeffi-
cient, R = hydraulic radius in ft, and Sp = passage slope (or bed slope).
Outlet velocities in chutes computed by assuming uniform flow will give
conservative estimates of velocity, because as the fish approach the
transition zone the mean water velocity will be reduced. In culverts, the
water surface profiles can be calculated because of the unvarying cross
section, constant bed slope and uniform roughness throughout. From equation
(17) it can he seen that the mean velocity varies as the slope to the 0.5
power, hydraulic radius to the 0.67 power and roughness to the -1.0 power.
Since the mean velocity is highly dependent on n, it is important that the
proper value of n be used. Chow (1959),suggests the following values for
Manning's n, shown in Table 9. A problem arises when one value of n is
selected, because n changes as the depth of flow changes as well as the
slope, discharge and cross-sectional shape. This is shewn in Appendix II.
Three tests were run with identical bottom and side roughness, and n

increased as the slope and depth of flow increased.
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Table 9, Mamni ng's s value for corrugated metal pipe and bed rock (from

Chow, 1359},
Surface Material Manning's »
Culverts (C.M.P.) 0.024
Red Rock
smooth min-0.025 max-0.040
jagged . min-0.035 max-0.050

The hydraulic radius is calculated by dividing the flow area by the
wetted perimeter. If the cross-section cannot bhe measured, a method can he
applied to estimate the hydraulic radius that gives values with errors iess
than 5%. This method was suggested by Remard and Laursen (1975), but the
author has expanded the method. It is used to estimate the hydraulic
radius for rectangular and symmetrical triangular shaped channels, or
combinations of such basic geometric shapes. For rectangular channels
where the average stream width divided by the average depth is greater than
35, the hydraulic radius can be estimated by the average depth of flow. If
the average width divided by the average depth is between 10 and 35, the
hydraulic radius can be estimated by 0.9 times the average depth. If the
average width divided by the average depth is less than or equal to 10, the
hydraulic radius can be estimated by the following equation

R= d[0.524 log (w/d) + 0.35] (18)
where: R = hydraulic radius, a = average depth in a rectangular channel,
and w = average width in a rectangular shaped chanmel. For symmetrical
trianqular shaped channels where the average stream width divided by the
maximun depth in the center of the stream is greater than or equal to 7,
the hydraulic radius can be estimated by 0.5 times the thalweg depth

(maximum depth). If the average width divided by the thalweg depth is
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between 3 and 6, the hydraulic radius can be estimated by 0.45 times the
maximum depth. If the average width divided by the maximum depth is less
than or equal to 3, the hydraulic radius can be estimated by

R= d¢[0.36 log (w/dy) + 0.23] (19)
where: dy = depth at the thalweg; and w = average stream width for the
triangular channel section. These conditions are summarized in Table 10.

Table 19. Hydraulic radius as a function of the width and depth for
rectangular and triangular shaped channels.

Width : Depth Ratio Hydraulic
Channel w/d (rectangle) Radius
Shape w/dy (triangle) (feet)

35 d(1.0)
Rectangular 10<w/d<35 . d{0.9)

<10 d[0.524 Tog(w/d) + 0.35]

>7

Z dt(Q.S)
Symmetrical -
Triangle 3<w/d¢<6 dt(0'45)

<3 d¢[0.36 log {(w/d¢) + 0.23]

An example will show how this information can be used to estimate the mean

flow velocity in a chute.
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Example: Determine the velocity at the bottom of a chute the fish
must face given that the bed material is jagged rock, the
channel shape is rectangular with an average width of 20 ft,
and average depth at the bottom of chute is 1 Ft. The bed
slope is 0.4,

For jagged rock, n = 0.035 to 0.050.
For a rectangular channel shape and w/d = 20, R = 0.9 (d),
or R = 0.9(}1) = 0.9 ft.
Therefore., assuming uniform flow (because of the steep slope
and a short tramsition from critical depth near the crest),
the velocity can be estimated using equation (17):
v = (1.49/n)R0.6750.5
using n = 0.035, yields:
V = (1.49/0.035)(0.9)0-67(0.4)0-5
Y = 251 fps
using n = 0.050, yields:
V= (1.49/0.050)(0.9)0-67(0.4)0-5
v = 176 fps
Therefore, depending on the roughness, the velocity at the
bottom of the chute will vary between 17.6 and 25.1 fps.
The actual velocity the fish must swim against can be reduced from the mean
velocity if the water depth is great enough so the fish can swim near the

boundary layer at velocities less than the mean.
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Gy at dt/2

Figure 25. Fish swimning in reduced velocities near stream bed.

The velocity variation with depth in conduits is logarithmic, and the
velocity at 0.6 of the depth below the water surface is very nearly equal
to the mean velocity in a vertical section (Linsley and Franzini, 1979).
The velocity reduction is most pronounced nearer the boundary where the
local velocities may be irregular when vortices are being shed behind large
roughness elements. Daily and Harleman (1973), suggest the following
formula for calculating the mean velocity in the case of a rough wall:

u/u, = 5.6 log (y/k) + 6.1 : (20)
where: U = temporal mean velocity, u, = shear velocity, y = mean depth of
flow at which u is calculated and k = height of dominant bed material. The
shear velocity (U*) can be calculated from (Henderson, 1966)

u, = (gRSf)O-5
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where g = acceleration of gravity, R = hydraulic-radius and S¢ = friction
slope. Assuming uniform flow conditions exist, the friction slope is
parallel to the bed slope as the resistance to the flow is balanced by the
gravity forces.

An example of how the velocity in the boundary layer varies from the
mean velocity of flow as depth increases along the centerline in a corru-
gated metal pipe will be shown (Table 11).

Table 11. Fish swimming in a culvert at velocities less than the mean
velocity of flow.

Depth of flow Mean Velocity at Mean velocity at Velocity
(d), ft 0.6 {d), fps y = 0.3 ft, fps Reduction
{half fish depth)

1 8.2 7.5 2

2 13.3 10.0 2 5%
3 169 11.6 3%
4 195 12.6 35%
5 26.6 12.8 38%

Assumptions: 1. Culvert diameter (D} = 6 feet.

2. Height of corrugations (k} = 2 inches (Standard
dimension, American Iron and Steel Inst., 1971).

3. Uniform flow occurs at a culvert bed slope of 5%.
4. Fish depth (df) = 0.6 feet, therefore to calculate the

mean velocity the fish will swim against use y = (df)/2
= 0.3 feet, using Eq. (20).
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This table shows that as the depth of water increases the velocity the fish
must swim against near the culvert bottom {compared to the mean velocity)
decreases. For smaller fish the gain will be more significant, but local
eddies may disorient them. Equation (20) can be rearranged in terms of
the minimum mean velocity the fish could swim against at the bed of a chute

as:

Uf = (5.6 log (df/2)/k + 6.1){gRS¢)1/2 @1

where: Uf = minimum mean velocity the fish could swim against near the bed
of a chute, df = depth of fish, g = acceleration of gravity, R = hydraulic
radius and Sf = friction slope or bed slope for uniform flow conditions.

Velocities in matural rock chutes are seldom simple to analyze,
because of the wide variations in channel shape and bed roughness. When
flow eccurs on a steep rock chute, large amounts of air may be carried
below the water surface in the highly turbulent flow. This entrained air
reduces the density of the fluid, resulting in an increase in volume called
bulking. Although not strictly applicable, the Manning equation is often
used to design channels on steep slopes and the cross-sections thus
determined are increased by an érbitrary bulking allowance to provide for
air entraisment. Hall (1943} has presented empirical data for smooth
concrete chutes which permit use of a modified value of n in the Manning
equation to allow for the effect of air entrainment.

If the channel shape can be surveyed and a cross section determined,
applying the continuity equation:

0 = AV (22)
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can yield estimates of the average water velocity-where: ( = flow rate in
the measured cross section, A = cress-sectional area of channel, and V -
mean velocity of flow. This method was used at Hell's Gate on the Fraser
River in British Columbia to estimate the velocities sockeye salmon were
facing as they attempted to negotiate the obstruction. The flow patterns
at Hell's Gate could be described as a constantly changing state of
turbulence, where the water surges, boils and entraps huge volumes of air.
Because of these flow patterns and the extremely rough channels, Jackson
(1950) noted that the average velocities computed this way are inaccurate.
Using equation (22), if the cross-section is measured at some point in the
chute, a staqe-discharge relationship can be developed so as the discharge
increases or decreases, the mean flow-through velocity can be estimated.
When analyzing a chute, the depth of flow should be greater than the
depth of the fish, or the fish will not be able to make full use of its
propulsive power. In a study conducted at Johns Creek Fish Hatchery near
Shelton, Washington by the author (Appendix Ifj, chum and coho salmon were
observed swimming up a velocity chute. At a depth of 0.13 ft, a 0% passage
success rate was recorded for both species. When the depth was increased
to 0.66 ft, a passage success rate of 100% was recorded for chum salmon at
a water velocity only slightly less than the first test. The maximum depth
of chum salmon was 0.65 ft. The results of these two tests show the
importance of the depth of flow for the fish to achieve successful passage.
Table 12 describes the two conditions that must be analyzed to determine
whether or not a chute is a barrier assuming thé plunge pool requirements,

landing conditions and depth of flow are sufficient.
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Table 12. Conditions for analyzing a chute assuming plunge pool requlre-
) ments, landing conditions and depth of flow are sufficient.

Yater velocity, fish speed,
slope length and fish Form of Barrier
performance relationships

1. VW > VF velocity barrier

Z. VW < VF
a. LS » LFS distance/velocity barrier
b. LS < LFS passable

where: V¥ = velocity of water (measured or calculated),

i1

VF = fish speed from equation (2),

LS = length of slope (wmeasured), and

L]

LFS= distance the fish can swin from Figures 10, 11 or 12.

Cascade Barriers

A cascade was described in the introduction as a reach of stream with
large boulders or jutting rocks that obstruct the flow. This obstruction
usually results in a narrower stream width, sharp changes in flow bound-
aries, and consequently high velocities and violent conditions. If the
bed slope over the reach is steep enongh to accelerate the flow, white
water and turbulence will consume most of the channel and offer little or
no resting areas for the migrating fish. If the reach is not too steep,
the obstructions in the stream can create good resting areas as the fish
work their way through the cascade.

Cascades are usually located in areas with steep topography (canyons)
and are very difficult to survey because of the high velocities, deep pools

and turbulence. Cascades usually persist as either boulder cascades
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or turbulent cascades. Boulder cascades consist of boulders in the
stream that are large enough to provide resting areas for the fish in their
wakes. To amalyze a boulder cascade, application of the four following
steps can be helpful:

1. measure the total drop in water surface over the entire reach,

2. determine the number of paths and/or steps per path the fish must

pass within the reach,

3. estimate the water surface drop and/or velocity the fish must

negotiate to successfully pass each step in each path, and

4. locate resting areas between each step (omr each path) where the

fish may rest before attempting to pass the next step.
0ften the flow between obstructions (boulders) can act like flow down a
short chute. Douma (1943) noted that for shert chutes, the velocity may be
determined by:

Vge = (2gH)0:5 (23)
where Y¢c = velocity down a short chute, g = acceleration of gravity, and
I = total vertical drop between two pools. Using this analysis, if any
step within the reach has velocities or elevation drops im excess of the
fish's capabilities, or resting areas are not present hetween each step,
the cascade would be a barrier to fish.

Turbulent cascades present the fish with a variety of difficulties,
but usually the excessive velocities and excessive turbulence is enough to
obstruct passage. These two conditions were studied extensively at the
Hell's Gate obstruction (Jackson, 1950). Velocities were measured by
methods described earlier, but the turbulence could not bhe measured in any

manner that could be related to passage success. Turbulence in cascades
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serves to deflect a swimming fish from its course, causing it to expend
energy to resist up-wellings, eddies, entrained air and vortices. Most of
the fish’s energy is utilized simply to maintain position and direction at
the foot of a high velocity obstacle (Jackson, 1950).
To analyze a turbulent cascade, application of the three following
steps can be helpful: )
1. time floats through the cascade to get an approximate surface
velocity (floats may be delayed in eddies);
2. observe possible resting areas and zones of reduced turbulence and
velocity near the banks and behind obstacles; and
3. locate points of extreme upwellings and surges in the cascade
which might deflect a fish from its swimming path.
If the surface velocities are excessive, there may be a path for the fish
to pass along the stream bank, away from the excessive velocities and
upwellings in the main channel..
In summary, this section has presented a detailed analysis of four
components which affect fish passage at waterfalls and culverts:
1. plunge pools;
2. landing conditions near waterfall crest;
3. falls; and

4. chutes.

A discussion of the parameters involved in each component, followed by a
table summarizing the important conditions to analyze have been presented.
Also, a discussion of hydraulic/fish capabilities in cascades is introduced

with steps to follow which will aid in determining the effect on fish

passage SuUCCESS.
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SITE ANALYSIS AND SOLUTIONS

The generation of solutions to fish passage problems at barriers is
dependent on the parts of the analysis performed. If the barrier is total,
the analysis will reveal the parameters which exceed fish capabilities.
The geometric conditions can be altered to reduce the excessive parameters
and assist fish passage. Evans and Johnston (1980), suggest the following
corrections for natural bedrock waterfall barriers:

1. Dam the plunge pool below the falls.

Z. Blast a plunge pool below the falls.

3. Blasts series of pools through the falls.

4. Provide a fish ladder over the falls.

According to Evans and Johnston (1980), the plunge pool should be raised so
the depth is 1.5 to 2 times deeper than the barrier is high. They also
suggest that blasting a series of pools through the falls is only practical
for bedrock falls under 10 feet in height.

These correction methods have been employed successfully by the U.S.
Forest Service and State Agencies in Washington (Schoettler?, 1953), Oregon
and Alaska. To build vertical-slot fishways at remote barrier sites on
British Columbia rivers, engineers working for the Salmonid Enhancement
Program (SEP) have perfected blasting techniques that allow natural rock to

be used as the floor and sides of the fishway (Salmonid, 1983). This

2 Schoettler, R.J., Improvement of Minor Falls, Federal Project No.
852-W-SI-10, Dept. of Fisheries, State of Washington, 1953.
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innovation, along with the use of precast concrete panels flown in by
helicopter, has resulted in substantial cost savings. Kerr, et al. { 1980)
suggest techniques to remove or bypass obstructions:

1. A steel bar can be used to hand pry and roll rocks for selective
placement .

2. Large rocks and boulders may be removed and/or relocated utilizing
slings with block amd tackle.

3. Large boulders may be reduced to a size that can he readily
removed, using a portable gas-powered rock drill or with explo-
sives.

Removal of an obstruction during egg incubation could cause serious
mortality by silting the downstream spawning bed.

0f the few project reports published, no information was found on the
pre-construction or amalysis phases except the mention of the height of the
barrier.

The objective of this section is te evaluate "parameter specific”
solutions with varying degrees of comstruction difficulty. For example, if
the height of a harrier is determined to not be excessive, but the fish
cannot reach the crest, then one of three things (or a combination) may he
happening: |

1. The plunge pool hydraulic characteristics are such that the
propulsive power and the orientation of the fish's leap are
affected (Table 6); and/or

2. The horizontal distance (or range) which a fish leaps is exces-
sive compared to the actual horizental distance the fish must leap

to reach the crest: and/or

69



3. Flow over the waterfall is diagonal, or concentrated on one side,
thus providing the fish with a false directional stimulus.
Analyzing these components will suggest the excessive parameter(s), that
must be reduced. Without this analysis the height of the falls may have
heen reduced when it was not excessive to fish passing in the first place.
In-depth analysis of this type will often reduce site construction' costs

and assure correction of the real passage problens.

The solutions to waterfall and culvert barrier physical problems are
directly dependent on the analysis. If the velocity in a rock chute or
culvert is excessive (Table 12}, then the velocity and/or the length must
be reduced. Assuming that Mannings equation (17} is exact, the components
that would reduce the velocity in descending order of effectiveness are:

1.  increase the roughness coefficient(n);

Zz. decrease the hydraulic radius; or

3. decrease the slope.

Adding baffles to culverts essentially increases the roughness and
decreases the hydraulic radius. If the depth of flow at the crest of a
falls is shalliow, then to increase the depth requires one of three hy-
draulic changes:

1. increase the discharge,

2. decrease the crest width, or

3. decrease the wvelocity.

These solutions can be incorporated at the crest of a waterfall
barrier by using instream control structures such as gabion baskets, rock
weirs and small retaining walls as flow deflectors to concentrate the flow.

in order to create an adverse slope, one would need to blast a pool above
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the crest. Each structure placed instream must be carefully amalyzed
hydraulically to assure proper functioning as the forces in the stream
channel change with discharge, ice and debris.

To show how this analysis/solution approach to barriers can be used,
two sites were chosen in ¥estern Washington and analyzed for the discharge
recorded during the site visits. It is important to note that these
examples address changes in parameters which were determined to be exces-
sive from the analysis. ¥hien these parameters are changed, the analysis
must be repeated, because the hydraulics of the entire barrier system may
have changed.

Red Cabin Creek - Analysis

Red Cabin Creek is a small tributary that flows into the Skagit River
near Lyman, Washington. The barrier on the creek is a culvert located in
the SE 1/4 of Section 3, Township 35 North and Range 6 East. The culvert
runs underneath Camp 17 Road about 3 miles from Hamilton, Washington. The
creek is used by chinook and pink salmon for spawning and contains good
coho spawning and rearing habitat. The culvert barrier is 35 river miles
from saltwater. The outlet of the culvert is shown in Figure 26. Note the
2 ft wide wooden scour apron.

Culvert Description: Starting at the water inlet, the
circular culvert is concrete lined with some patches of
corrugated metal on the bottom. This continues until
about the last 30 ft which is steel pipe. There is a
debris jam about 2 feet high in the middle of the

culvert which should be removed.



Culvert Dimensions: Uiameter = 6.0 ft
Length = 150 ft
Stope = 4.43
Hydraulic Analvsis: Velocities in the ciylwvert must de determined so that

the distance the fish can swim can be compared tc the cylvert length.

Figure 26. Looking upstream at Red Cabin Cresk culvert outlet.
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Using equation (17)

I = (1.49/n)1pu.h7<0.5
where V = average velocity of fléw in fps, 1 = roughness coefficient (0.012
for smooth steel surface, Chow, 1959), § = bed slope (measured at 4.4")
(for assumed normal flow depth), and [ = area of flow/wetted perimeter in
ft. For circular culverts the flow area can be calculated by:

A = [ 1 /180) cos il (r-d)/rdrd -Lr2-(r-d)2]0-5(r-4)
where A¢ = area of flow, r = radius of culvert, and d : depth of flow (or
uniform depth). At the culvert outlet, the flow can he assumed to be
uniforst, and this depth was measured at 0.55 ft on December 8, 1983.

The wetted perimeter of the flow area can be calculated hby:

Yp = (27 /180) cos~i[{r-d}/rlr
where W, = the wetted perimeter, r = radius of culvert, and d - depth of
flow. Solving for A¢ and W, yields:

Af = 1.29 ft? and W, = 3.69 ft
Substituting these into equation (17) yields:

v ={1.49/.012}x((1.29/3.69)0.57( .044)0- 2

Vo= 12.9 fps

Multiplying this velocity by the flow area, equation (22) yields a dis-
charge of:

0 = VAg = (12.9)3(1.29) = 16.6 cfs (on 12/8/83)
The distance the fish can swim is a function of the fish condition, water
velocity and depth of flow. For average sized adult chinook, coho and pink
salmon, a depth of 0.55 ft is probably a minimum, and will therefore net
reduce the swimming capabilities. Since i%d Cabin C(reek is a short

tributary, with the barrier located near the spawning grounds., a coeffi-
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cient of fish condition (Cfc) of 0.75 will be used (description is given in
fish capability section). Using Figures 11 and 12, a water velocity of

12.9 fps, and Cg; = 0.75, yields the following distances the fish can swim:

Specie Maximum Swimming Distance
Chinook 16 ft
Coho 16 ft
Pink Impassable

Because the culvert is 150 ft long, the fish will not be able to negotiate
the culvert swimming against the mean velocity. Also, the shallow depth
forces the fish to swim against the mean flow velocity.

The measured outfall height at the end of the culvert was 2.3 ft, but
becanse of the high exft velocity, there was some horizontal component to
the falling jet. This distance can be calculated from equation (13):

XP = V¥c[cos {BU.)]t,
where t can he determined from the equation (14):

H o= [Vic(sin Q4.) It - (1/2)gt2,
where H = 2.3 ft (measured), VW, - 12.9fps, and OW. = 2.5°.

Substituting in these values yields:

2.3 = 0.56(t) + 16.1(t2),
and solving for t yields:

f = .36 seconds.

Substituting this into equation (13) gives:

XP = (12.9 cos 2.5°)0.36 = 4.6 fc.

Because of the wooden scour apron, the distance to the standing wave
couldnot he observed. Therefore, this distance, XSW (Fig. 22) will be

assumed equal to 1ft. with the apron removed. This gives a X value of:
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Y = XP o+ XS¥ = 4.6 + 1.0 = K& ft

Yow X and ! can be <ubstituted intc the lesping angle equation {16):

8L = tan-l 3(H/X),
where # = 2.3 ft (measured), and X = 5.6 ft (calculated). Therefore:
aL = tanl 3(2.3/5.6) = &1°

Superimposing H and X on Figures & and ¢ shows coho and chinook will land
right at the crest, and pink salmon about 1 ft short of the crest, at a
leaping anale of AC degrees (dotted lines Figures 27 and 28). This angle
corresponds well with the calculated leaping angle of £1°. Because of the
high velocities at the culvert outlet, the fish will not he ahle to land
successfully and swim through. Therefore, the outfall drop is considered a
horizontal distance (or range) barrier with adverse landing conditions.

This analysis has shown that at a discharge of 16.6 c¢fs, Red Cabin
Creek culvert is a velocity - lenqth barrier and a leaping range harrier.
Classification for this harrier is shown in Figure 29.

Fed Cabin Creek - Solutions

To negotiate the culvert length of 150 ft, the velocities would need
to be less than or equal to 3.4 fps for chinook and coho, and 2.6 fps for
pink salmon. In the corrugated metal pipe section with iacreased roughness
coefficient, the velocity would only be reduced to 6.4 fps. Dane (1978)
recommends for culverts greater than 80 ft in lenath, the average velocity
should not exceed 2.9 fps for adult salmon, and that the culvert slope
should not exceed 0.5%, unless appropriate compensation is made by the
addition of baffles within the culvert. The design on culvert haffles car
he found in McKinley and Webb (1956), Encel (1974) and Watts {1974}. The

addition of baffles essentially increases the value of the roughness
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SPECIES: Chinook, Coho and Sockeye VFB: 22.4 fps
e Cte = 0.75 Cic = 1.00
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Figues 27, Red Cabdn Creek culvert putlet superimposed on chinook and coho salmon leaping curves.
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SITE: Red Cabin Creek Culvert DATE: 12/8/84
LOCATION: SE 1/4 of Section 3, T35N, R6E

; SITE SKETCH
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CLASS: Compound (chute/fall)
TYPE: ILC 1
DEGREE OF DIFFICULTY: 4

MAGNITUDE: H=23ft X = 5.6 ft
VW = 12.9 fps LS = 150 ft

DISCHARGE: Q = 16.6 cfs

COMMENTS: Wooden scour apron deflects flow at

culvert outlet. Debris jam in middle
of culvert.

Figure 2¢. Classification of Red Cabin Creel: culvert.
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coefficient, therefore decreasing the velocity and increasing the depth of
flow, creating a pool and weir fishway at lower flows. This could be
accomplished simply by placing roughness elements on the culvert bottom,
but would not provide resting places as baffles do. Since the slope cannot
be changed, the parameters that could be variedto decrease the velocity to
2.6 or 3.4 fps in equation (17) is the roughness coefficient, assuming
Manning's equation is exact, and the hydraulic radius. Te achieve these

velocities, the roughness coefficient should equal:

vater Velocity n{roughness coefficient
2.6 fps 0.059
3.4 fps 0.045

In Chow {1959) these roughnesscoefficients correspondto a natural steam
channel with cobbles or large boulders. The actual size of the roughness
elements could best be determined by a model study so that velocity
measurements could be made over a range of discharges and roughness element
heights and arrangements.

At the culvert outlet, because the velocity is excessive, the fish
could leap into the culvert and then be swept back. Therefore assume here
that the velocity in the culvert is reduced in some manner to a value
suggested earlier for passage to be achieved. An average of 2.6 and 3.4
fps, will he used or 3.0 fps. From equation (i3) this reduces XP to 1.1
ft, and X to 2.1 ft, adding ¥ ft for the distance to the staading wave.
Calculating the leaping angle for the new outlet geometry gives:

OL - tan-1 3(2.3/2.1) - 73°
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Superimposing the outfall geometry again on Figures 8 and 9 shows that
coho, chinook and pink salmon can successfully enter the culvert at a
leaping angle of about 60°, shown as dotted limes in Figures 30 and 31.
Again, this angle is close to the calculated leaping angle of 73°.
Therefore, decreasing the velocity in the culvert to 3 fps will allow the

fish to successfully swim the culvert length of 150 ft and reduce the hori-

zontal leapine distance. Table 13 is a summary of the problems and

suggested solutions for Red Cabin Creek culvert.

Table 13. Red Cabin Creek problems and solutions.

Problems

Solutioens

Wooden scour apren prevents
fish from entering culvert.

Horizontal leaping distance
is excessive, caused by high

velocities at crest of 12.9 fps.

Velocity in the culvert is

excessive for a culvert lenath
of 150 ft.

Debris jam ia middie of culvert
prevents fish passage.

Remove apron.

Decreasing velocity to 3 fps at
the crest would reduce the
horizontal leaping distance and
allow successful passage.

Add baffles orsome type of
roughness elements to decrease
the velocity. Check culvert
capacity to pass flcod flows.

Remove debris

Chuckanut Creek Waterfall - Analysis

Chuckanut Creek is located just south of Bellingham, Washington; it

flows along the 01d Samish Highway and discharges into Chuckanut Bay.

barrier in Question, figure 32,

of the western 1/2 of Section 17, Township 37 Noth,
creek. be the barrier is used iy

harrier and coho and steelhead spawnin

is located at river mile 1.8,

Range 3 East. The

chun Salmor is the lower part below the

the creek above =re barrier.

The

in the middle
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Figyre 32, Looking upstream at Chuckanut (reek waterfall.

Figure 33.

Plan view of obstructing rock near Chuckanut Creek waterfall
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FL?W
l Upstream Pool

Not to Scale

Rock Slope

Velocity Chute

Rock Slope

Survey
Base

Line Crest of Falls

Steep Sloping
Rock Face

Standing Wave

Deep Plunge

Sand stone/ Pool
Raock Overhang

Figure 34. Plan view sketch of Chuckanut Creek waterfall.
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Waterfall Description: In the upstream section the harrier
begins with a short, marrow reck chute (triangular Cross section)
which terminates in a 2 to 3 it drop. At the drop there is 3
rock/sandstone overhang which say obstruct passage to the upper
chute of the barrier, Figure 33. The main opening for passage
appears to present a very shallow depths mear the crest. This
waterfall does not appear to he an elevation or velocity barrier,
but because of the rock overhang it may present orientation
problems. Steelhead have been observed by lept. of Fisheries
personnel to successfully pass the barrier, hut have also been
chserved falling back after landing near the crest.

Hydraulic Analysis: To amalyze the hydraulics at Chuckanut Falls, an

engineering survey was conducted on 12/8/83 to determine the chute cross
sections and significant topographic points throughout the barrier site. A
survey base line was established (Figure 34) and measurements of channel
cross-sections taken. Using station 1+07 as a representative cross-section
(Figure 35) for the chute, the velocities can be calculated using equation
{17) with the following values: bed slope (assume uniform flow) = 7.7-
(measured), flow area (measured from Figure 35) = 1.5 ftz, wetted
parameter (from Figure 35) = 3.9 ft, and roughness coefficient (jaqqed rock
0.03% to C.050, Table 9). Substituting these values into equation (17}
yields for the average velocity at station 1+07:

¥ = (1.49/0.035)(1.5/3.9)0.67(0.077)0.5

H
EE]

6.2 fps, and

H
i

¥ = (1/49/0.050)({1.5/3.0)C-67(0.077)0-5 = 4.4 fps.

Multiplying the average velocity by the flow area, equation {22} yields a

discharge of’:
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i
[

Qo n=0.035) = VA = 6.2{1.5) = 9.3 cfs and

Q(n=0.080) = VA

]

4.4(1.5)

6.6 cfs.
Therefore at station !+{7, the average velocity the fish must face assuming
a discharge of 8.0 cfs is 5.3 fps. A similar analysis was applied to
station 1+00 (Figure 35, the crest), and an average velocity of 3.1 fps was
calculated. The velocity decreases near the crest because of the increased
flow area from station 1+07 to [+QO.

The barrier is locatedonly 1.8 river miles from the salt water, so a
coefficient of fish condition, Cfc, of 1.0will be used, The distance the
fish can swim for thé average velocity calculated (5.3 fps) is given by

Figures 10, 11 and 12 as:

Specie Maximum Swimming Distance
Steelhead 105 fe
Coho 80 ft
Chum 418 ft

Since the chute is only 12 ft in length, if the fish can get into the chute
they will easily pass the barrier.

The wupper chute terminates in an overfall where the water breaks off
the crest (which is angled to the flow) and strikes the plunge pool. The
change in water surface elevatioa from the crest to the plunrge pool was
measured at 2.7 ft. Because of the overhanging rock on the right side of
the fall (left lockina upstream in Figure 32} the fish are forced to leap
at the right side (looking upstream), where the water breaks of I the crest
and flows down a short chute (7.5 ft lona) at a measured depth of C.1 ft.
Because of the shallow depth it is not possible for the fish to swim up

this chute, and therefore they must leap to pass.
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The distance X was measured to be 8 ft. Using equation (16), and the
measured H and X values of 2.7 ft and 8.0 ft respectively gives a leaping
angle of:

8L = tan-l3(W/X) = 45°
Superimposing H and X on the fish leaping curves (Figures 7, 8, 9) shows
the following:

1. Steelhead and coho can successfully pass at leaping angles of 60

and 40 degrees (Figures 36 and 37).
2. Chum salmon will fall short of the crest by about 4 ft at leaping
angles of 60 and 40 degrees (Figure 38).
The calculated leaping angle of 45° will extend to the point of maximum
leaping distance for this falls geometry. The fish that successfully leap
will probably land in very shallow water and higher velocities because of
disorientation caused by the overhanging rock.

The plunge pool depth was measured at 5.5 ft, and therefore provides a
good leaping situation. Under the present conditions, Chuckanut Creek
falls appears to be an elevation and orientation barrier at low flows (8
cfs) to chum salmon, but not to steelhead and coho, except for the
overhanging rock obstructing the path to the upper chute. Classification of
this barrier is shown in Figure 39.

Chuckanut Creek - Solutions

A very good low flow channel is present above the falls, upstream from

the falls crest. Referring to Figure 33, if the overhanging rock was

removed, the fish would have a "straight-shot" into the upper chute. Also,
they would be attracted to leap at the area of highest flow momentum

because of the deep chamnel on the left side (looking upstream). This would
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also allow the fish to get further upstream before they attempt their leap.
and decrease the horizontal leaping distance (X}). ©~ Even at high flow, the

majority of the flow would he concentrated in the deeper low flow channel.
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SPECIES: Chinook, Coho and Sockevye VEB: 22.4 fps
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Figure 37, Chuchanut Treed fall supeviupised on coho sal@on leaping curves.
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SITE: Chuckanut Creek Waterfall

DATE:

LOCATION: Middie of the Western 1/2 of

Section 17, T37N, R3E
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Figure 35. Classification of Chuckanul Creek waterfall.,
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CONCLUSIONS

The cuidelines for analyzing a waterfall or culvert barrier in this

report are relatively simple. With the expertise of a fisheries biologist

and a hydraulic engineer these guidelines can be used effectively to

resolve the dilemmas of fish passage problems at barriers. The following

is a list of significant conclusions developed:

1.

Unstable plunge pools disorient and reduce the fish's leap trajectorv
and height respectively.
Velocities and depths can be estimated for any irregular shaped falls
crest as 4 function of the discharge at critical depth from:
0270 = A3/u

where 0 = stream discharge, o = acceleration of gravity, A = cross
sectional flow area and ¥ = top stream width.
Water surface profiles at barriers can be superimposed on fish teapinn
curves to analyze passage success. The optimum leaping angle can be
estimated by:

8L = tan-! 3{H/X)
where H = the difference in water surface elevations, and X =
horizontal distance from the s$tanding wave to the crest of the falls or
chute,
For rectangular and trianaular shaped channels the hydraulic radius can
be estimated as a function of the average width and depth with errors

less than 5%; this allows the mean velocity to be calculated.
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For depths greater than ! feet in corrugated metal pipe culverts, fish
can swim in reduced velocities near the boundary where the velocitv
opposing the fish is less than  the mean velocity by as much as 30 .

Stage-discharge relationships,when compared wit'! migration season

fiows, will define hydraulic conditions at the harriers which the fish

must negotiate.
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SUGGESTIONS Fok FURTHER STUDY

Concepts for analyzing harriers to upstream fish migration have been

presented in this paper. As each section was written, more and mere ideas

about methods for analyzing barriers were unveiled. The urge to go back

and include these new ideas was eventually offset by the necessity to

complete the study. Further study of the following areas will increase the

accuracy of analyzing and finding sclutions to fish passage problems.

1.

Plunge pool: guidelines should be developed to accurately
determine the plunge pool depth for the given barrier geometry and
hydraulics which create optimum leaping conditions.

Fish speeds in an air-water mixture: there should be some
reduction in the fish's burst speed in a air-water mixture because
of the reduced water density. Calculations need to be made using
fish lecomotion equations (Blake, 1984) te determine the reduction
of the propulsive power of the fish's tail im a medium with
reduced density. Corresponding leaping heights and trajectories
can then be calculated.

Leap success ratios: as the height of barrier increases, the
number of attempts required for a successful pass should increase.
This could he studied in a hatchery fishway, where the leap
success ratio (successful leaps:leap attempts) is recorded for a
range of water surface drops.

Migration distance froem ocean to barrier reducinq fish capa-
bilities: a survey could be taken to record the river miles to a

barrier, height of barrier and species which pass or are blocked.
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Aerial photography: the design of low-level, balloon mounted
photographic equipment could he used. These photograph can
greatly reduce site survey tine and provide excellent visual-
ization when used with ground survey comtrols and at different

stages of stream flow.
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APPENDIX 1

NOTATION
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Elevation (H)

H
i

Distances {L and X)

NOTATION

in water surface elevation

Height of the fishes leap

L5
X

Xp

X SW

LF
LFS

Velocities {V)

W
vE
vFg
vFP

VFS

Length of slope
Horizontal distance from the crest to standing wave

Horizontal distance from the crest to point where
falling water plunges

Horizontal distance from point where falling water
plunges to standing wave

Length of fish

Length the fish can swim

Velocity of water

Fish speed

Burst speed of fish

Prolonged speed of fish

Sustained speed of fish

Temporal mean velocity

Temporal mean velocity at which the fish swinm
Shear velocity

Relative speed of the fish to the water

Velocity of water at falls crest
Depth of water
Critical depth

Depth in the plunge pool
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g Denth of plunge by waterfall jet

de Depth of fish
Slopes (S)
Se Fish exit (water inlet) slope
Sp Fish passaae (water transition) slione
Others
Cse Ceefficient of fish condition
GW Angle in degrees from horizontal at which the velocity
leaves the crest
aL Angle in degrees from the horizontal at which the fish
leaps
R Hydraulic radius
g Acceleration of gravity
n Manning's emperical roughness coefficient
W Width
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APPENDIX II
AN ANALYSIS OF COHO AND CHUM SALMON SWIMMING

UP A VELOCITY CHUTE
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AN ANALYSIS OF COHO AND CHUM SALMON SWIMMING UP A VELOCITY CHUTE

Waterfalls and culverts sowmetimes form velocity barriers to the
upstream migration of adult salmon and steelhead trout. Often, the swimming
capabilities of the species in question will determine the success of
passage. Other factors which effect the success of passage are: depth of
flow, distance the fish wust swim, and violent turbulence (unstable flow
patterns). In order to analyze how these factors effect Fish passage, a
"velocity chute" study was conducted at Johns Creek Fish Hatchery near
Shelton, Washington. This study was done in conjunction with the Bonneville
Power Administration (BPA)} Fisheries Project 82-14, "New Concepts in Fish
Ladder Design.” At the conclusion of the study, it became apparent that a
velocity chute could be used as an efficient and economical method of
passing fish. With a fishway pool length of 12 ft (3.66 ml and a chute
length of 8 ft. (2.44 m) chum salmon (Onchorhynchus keta) were cbserved
passing a change in water surface elevation of 1.8 ft (0.55 wml with a
passage success rate of 100%.

Experimental Facilities

The chute was installed in the existing fishway bulkhead slots., It was
constructed with 3/4 inch plywood at a length of 8 ft (2.44 nl. In test +]
the chute width was 2 ft (0.6]1 m) with a wall height of 1 ft (4.30 m). After
completion of test #l1, the width was decreased to 1.25 ft. (0.38 m) and the
wall height was increased to 1.5 ft (6.46 m} in order to obtain a greater

depth of flow (test #2}. At the inlet (crest) the chute was supported by
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two niaces, which allowed adjustment of the sippe. Near the fish eatrance

-

(ot

w3z suzrorted ay adjustable vertical and horizontal sugpport rods (Fing,

1i,

Transition Zone

Und Form Flow Zone

Hydraulic Jump/
Standing Have Zgne

Figure 1. Plan view of the B ft Jong and 1.25 ft wide velocity chute test
apparatus installed in the Johns {reek Fisiway.

Chute Hycrauligs

The apprcach vyelocity from fhe upstream poo! was negligible, and
eritical denth {Froude Hpo. = 1} always occurred at the chute water entrance
sr crest. The threa zones of flow observed during testing were: 1}

transition zong; 2) uniform flow zone, and 3) hydraulic jump/standing wave



zone. In the transition zone, the flow waspassing through critical {at the
crest) to uniform depth approximately 2 ft (0.61 m) down the slope from the
crest. The depth is greater in the transition zone than in the uniform flow
zone and when the fish approached the tramsition zone they "burst” through it
inte the upstream pool because of the decreased flow velocity. The uniform
flow zone began at approximately 2 ft (0.61 m) from the crest and remained
at constant depth until it dissipated into the downstream pool. At this
point, a hydraulic jump developed which increasediin intensity as the chute
velocity increased.

The addition of roughness elements on the floor of the chute bad the
effect of increasing the depth and decreasing the velocity for a given
slope. The spacing between the rouqhness elements was filled witn cir-
culating water containing stable eddies, creating a pseudo wall. Chow
(1959) classifies this as "quasi-smooth flow." Quasi-smooth flow has ;
higher friction factor than flow over a true smooth surface because the
eddies in the grooves consume a certain amount of emergy. These hydraulic
conditions were observed in a plexiglass model of the chute in Albrook
Hydraulics Laboratory at Washington State University. The model was also
used to verify field measurements of velocity and discharge.

Study Objective

The objectives of this field study were to observe an4 record the
following:
1. The response of cohe and chum salmon to outflow conditions at the
downstream end of the chute:
a. leaping;
b. swimming: and

C. attraction conditions.
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2. Water depths which affect passage:
a. minimum depth;
h. depth where swimming is umimpaired; and
c. effect of roughness elements on water depth/fish passage.
3. Swimming speeds of coho and chum salmon:
a. relative velocity of fish with respect to water (fish speed),
b. relative velocity of fish with respect to chute, and
€. passage time,
Resul ts
Test No. 1; Chute Width = 2.0 ft (0.61 m)}

In this test observations were made of the chute hydraulics and fish
movements. The majority of fish tested were adult coho salmon (Onchor-
hynchus kitsutch) which were in poor physical comndition, displaying full
spawning colors and averaging about 2 ft (C.61 m) in length. The few chum
salmon tested also displayed full spawning colors and averaged 30 in (76.2
cm) in length. The maximum depths of the fish bodies were: coho 0.4-0.5 ft
{0.12-0.15 m) and chum 0.65 ft {(1.65 cm).

An immediate problem developed because the depth of flow at 0.2 te 0.3
ft {0.06 to 0.09 m) was too shallow. The smaller coho could pass but the
larger chum could not. Average velocities in the chute ranged from & to 8.3
fps (1.74-2.9 m/s) which is in the range of the upper prolonged speed of
10.6 fps (3.23 m/s) for coho salmon suggested by Bell{1973).

The fish response to different types of hydraulic jumps (or standing
waves) was observed. The Froude number for all tests was in the 1.2 to 4.1
range. Chow (1359)suggests for this range the jump type is just beginning
to oscillate as was observed. Stuart {1964} describes these water surface

oscillations as points from where fish are often seen leaping. The fish

7



that nassed weres observed to be holding in the stardirg wave, then byrsziin
irto the uniform flow zone (Fig. 2%, and groceaeding 3% 2 Consty
until the transizion Zone w#as reached. Cone salmep that regched fag
transition zone always swam successfully Tnia the upper pool. Unsuccesstul

Fish were usually slow starters who, after geveral attempts, were observed

leaping out of the standing wave.

Test Ho. 2; chute width = 1.25 ft {0.38 =}

The coho tested were in worse condition than in test #1 but a fresh
run of chum salmon entered Johns Creex anly a few days before the testing
started. Fish sizes were the same as Test Mo. 1. The channel widlh was
decreased to 1.25 f1 (0.38 m) and roughnass elements were added to the chute
floor. The height of the roughness elements was 1.5 in {3.8 cm), spaced at a
distance of 3 ¥n (7.6 cm) and 6 ia (15.2 ¢m) in senarate removable faise

filaprs. The data obtained from these tesis are summarized in Table 1.

Figura 2. Cohe salmon bursting out of hydraulic jump ints uniform flow
zone.

108



Table 1. Velocity chute test #2 data.

Uniform Denth

From Above Uniform Length Passage
Test No. Floor Roughness El.  Velocity Slepe Success Flow
{ft) (ft) [fps) {ft) {%) {cfs)
(Stope}
(%)
232 0.13 -— 8.3 5.5 0{ coho) 1.1
(26) 0{chum)
2pd 0.41 0.28 5.2 7.5 95(coho) 2.3

{15) 92(chum)
2cC 0.51 0.38 5.0 8.0 64{coho) 2.9
(19} 89{chum)

2d< 0.66 0.5 6.8 7.0 78{¢coho) £.0
(27} 100( chum)
2ec 0.5 0.44 6.7 7.0 No coho 4.1

{36} 23{chum}

Notes: a - roughness elements not used, floor consisted of plywood
(n=0.021).

b - Roughness elements with 3 inch longitudinal spacing (n=0.044).

¢ - Roughness elements with 6 inch longitudinal spacing {(n=0.055,
0.053 and 0.059 for tests 2¢, 2d and Ze respectively).
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In test 2a, roughness elements were not used, and the depth of flow was
0.13 ft (0.04 m) with an average velocity of 8.3 fps (2.53 m/s). The
success passage was 0X for coho and chum, so this depth was a barrier. Once
the roughness elements were added to the floor the depth increased to 0.4 ft
(.12 m) - 0.6 ft (0.18 m) range which was adequate for fish passage. This is
the depth from the floor to the water surface. Dane (1978) suggests a
minimam depth of 0.75 ft (0.23 m) for Pacific Salmen, and Dryden and Stein
(197 5), suggest that "in all cases, the depth of water in a culvert should
be sufficient to submerge the largest fish to use the structure.” This
field study has shown how partial submergence impairs the ability of the
fish to generate thrust.

Fish Movements

As noted in Test #1 results, fish were observed holding in the hy-
dravlic jump where the velocity is decreased and then bursting into the
uniform flow zone as shown in Figure 3. Once into the uniform flow zone
(zone of highest velocity) the fish always moved laterally to the chute side
wall and continued through the uniform flow zone along the wall (Fig. 4).
Near the wall boundary the water velocity was decreased as much as 60% of
the centerline velocity, because of the shearing resistance created. When
fish approached the transition zone and the velocity decreased, they moved
out into the middle of the chute (Fig. 5) and burst through the crest into
the upper pool. Some of the unsuccessful or slower fish were observed

crossing back and forth laterally in the chute searching for a zone of lower

velocity.
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Figure 3. Chum sz2lmon dursting out of hydraulic jump after several seconds
of holding in the jump.

Figure 4. Chum salmon swimming up chute taking advantage of reduced
velacities in boundary layer.
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Fiqure 5. Chum salmon approaching transitioan zone moviag laterally inte
middle of chute.

o

Aralysis of Fish Speeds

Tests Hesults

Tne time reguired to successfully pass the chute was recorded with a
stop watch. Knowing the distance that the fish swam to reach the crest, the
velocity of the Figh with respect to the chute can be calculated. ‘When the
water velocity is detarmined the actual swinmming speed of the fish can be
calcylated, This calculation assumes constant velocity down the chute which
is not exactly true because of the transitisn Zone near the crest. Bul as
noted earlier, uniform depth was reached within 2 £t {3.61 m) of the water
inlet. As the siope was ‘ncreased 1n subsequent tests the flow approached

uniform depth in an even shorter distance.
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A calculation of fish speeds for test #2b is shown below
Length of Slope(lLS) = 7.5 ft.
Water Velocity {YW) = 5.2 fps

Passage Times (PT} in seconds:

Test #2b: coho chum
maximum 4.7 5.5
average 3.5 4.0
minimum 2.0 2.3

Fish Velocity {fps) = (LS)/{PT} + VW

Species Fish Velocity (fps)

Maximum Average Minimum
Coho 8.9 7.3 6.8
Chum 8.5 7.1 6.6

Velocities for the other tests are summarized in Table 2.

Table 2. Maximum, average and minimum swisming speeds of coho and chum
salmon passing the velocity chute.

Fish Velocity {fps)

Test Ho. Species Minimum Average Maximum
2b Coho 6.8 7.3 8.9
Chum 6.6 7.1 B.5
2c Coho 6.0 6.5 7.6
Chun §.0 6.4 7.1
2d Coho 9.1 G.5 10.7
Chum 8.6 8.8 8.9
e Chum 8.8 9.1 10.0
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ciscussion

Swimming speeds of fish are usually reported in three categories:
sustained, prolonged and burst. Burst speed is defined as causing fatigue
in 5 to 10 seconds (3el1, 1973). From observations and fatigue times
recorded, the fish passing the chute were assumed to be using burst activ-
ities. Bell {1973} suggests a burst speed range of 10.6 to 21.5 fps (3.2 to
6.5mn/s) for coho salmon. The wmaximum swimming speed {or burst speed)
recorded in these tests for coho salmon was lg.7 fps (3.26 m/s), definitely
on the lower range of Bell's suggested speeds. But as noted earlier, these
coho were in very poor physical condition. Therefore, the maximum speed of
10.7 fps {3.26 m/s), which is 50% of the maximum burst sneed suggested by
Bell (197%), is probably the upper raange of burst speed for a coho salmon
near its spawning time.

Burst speeds of chum salmon have not been recorded in the literature,
but they are generally thought to be a weaker fish in comparison to coho.
Observationsl of chum salmon leaping 3 and 4 ft {0.91 and 1.2 =) sungest 2
burst speed of about 15 fps (4.6 m/s} to achieve these heights. The maxi~un
swimming speed recorded for chum salmon was 10.0 fps (3.0% m/s) or 67" of
the maximum burst speed of 15 fps (4.6 m/s). The chum tested were in qood
shape, but their spawning colors and teeth were fully developed.

This information can he helpful in analyzing waterfalls and culverts as
barriers to upstream fish migration. The speed of the fish can be Lased ¢n
some percentage of the maximum burst speed sugoested by Bell {1473),

depending on the condition of the species in question. This will be termed
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the "coefficient of fish condition” {Cg.). Table 3 gives a range of Cyg. and
the corresponding fish conditions based on observations made of coho anA
chum salmon in Jolns Creek.

Table 3. Coefficient of fish condition {C¢.}; values based on observations

and data taken for coho and chum salmon at Johns Creek Fish
hatchery near Shelton, Washington.

Fish Condition Cfe

Bright, fresh out of the ocean or
still a long distance from spawning grounds, 1.00
no spawning colors yet developed.

Good, in the river for a short time,
spawning colors apparent but not fully 0.75
developed, still migrating upstream.

Poor, in the river for a long time, full
spaaning colors developed and fully 0.50
mature, very close to spawning grounds.

Relative Fish Velocity

Another concept tested in this study was that of the relative velocity
at which fish swim with respect to the chute. Studies on fish passing
through culverts have assumed this "fish passage velocity” to be 2 fps {0.61
m/s} in relation to the culvert (Pane, 1978}. This is am important para-
meter for passage analysis because, given the water velocity., one can
determine the speed the fish must swim to pass. Values obtained in this

study were average4 over four runs and are given in Table 4.
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Table 4. Relative velocity of chum and coho salmon with respect to chute.

Species Relative Fish Velocity {fps]
Coho 2.1
Chum 1.9

Feasibility for Fish Passaqe

All tests were conducted with a pool length of 12 ft {3.66 m) and the
change in water surface elevations {H} were measured for each test. The
water surface drop was not a variable in this study because the velocity
down the chute is independent of the change in water surface elevations, is
can he seen by Manning's equation:

V= (1.49/n) RZ/3 sl/e

The chanae in water surface elevation {H} was varied to obtain the si-e
chute length at a steeper slope. When the values of H are compared with the
passane success rates and fishway slope, the feasibility of usinqg slinhtly
roughened chutes for fish passage hecomes obvious !Table ©}. “urrently
fishway designers suggest a maximum water surface drop of 1.C ft ( 1.s50% 1
for coho salmon, 0.75 ft {(0.23 m) for chum salmon, and a maximur fishway
slope of 1 on 8. 1In test 2d, with a water surface drop of 1.2% ft (N7 =}
and a fishway slope of | on 6.5 a 100" passage success vrate was reccraed
for chum salmon. This was achieved Dy adding only rouahness elements 1.° «

1.5 in {3.81 x 3.81 cm) at 6 in {15.2 cm) clear spacing to the floor of the

chute.
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Table 5. Change in water surface drop, percent successful passage and 7isn
way slope for chum salmon testing at Johns Creek Fish Hatcherv
near Shelton, Washington.

dverall
Test No, H (ft) Chute Slope % Passage (Chum) Fishway Slope
(%) Including

Pocl Length

Z2b 1.03 15 G2 1/11.7
2c 1.80 19 89 1/6.7
2d 1.85 27 100 1/6.5%
e 2.5 36 23 1/4.8
Conclusions

This study showed how an 8 ft {2.44 m) wooden rectangular chute can be
used to estimate the swimming capabilities of coho and chum salmon and to
determine the feasibility of using chutes in series to pass fish. Some of
the findings can be summarized:

1. When passing the chute, coho salmon only leaped after several

unsuccessful attempts at swimming. Chum salwmon always swam to

pass.
2. Minimum suggested depths for passage are: coho 0.4 ft (0.12 m} and
chum 0.5 ft (0.15 m). Depth of water where fish are umimpaired

should be equal to the maximum depth of the fish body.

117



3. The maximum speed obtained for coho and chum salmon are 10.7 and 10
fps (3.26 and 3.05 m/s), respectively.

4. Coho salmon were swimming at a level of 507 of their maximum burst
speed and chum salmon at 67%.

5. The average relative velocities of the fish with respect to the
chute were cohe 2.1 fps (0.64 m/s) and chum 1.9 fps (0.58 m/s).

6. The use of a velocity chute 1.25 ft (0.38 m) wide by 1.5 ft (0.46
m} high with roughness elements can he used to pass salmon with a
high passage success rate and water surface drops of up to 2 ft
{0.61 m) with a pool length of 12 ft (3.66 m). The pool length is
the dimension froa one chute inlet to the mext,

Sugpestions for Future Testing

To measure the response of fish to a certain parameter, all others must
he held copstant. For example, in test #2 the velocity was increased hy
increasing the slope of the chute, but because the depth was not held
constant it was hard to determine whether the depth of fFlow or the increased
velocity was affecting the passage success rate. This could be solved by
keeping the depth of flow always greater than oF equal to the maximum depth
of the fish at the midsection. Other suggestions for further testing might
address the following:

1. At what slope does the velocity increase c¢reating a velecity

barrier, by species, assuming the depth is sufficient?

2. What is the fish respomse at a velocity barrier; does leaping

commence or do the fish continue to try to swim up the chute?

3. At one velocity where the passage success is low, try three

different sizes of roughness elements and observe hehavior.
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4. As the velocity increases, does the relative velocity of the fish

with respect to the chute increase cr remain constsnt’
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